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Abstract. This article introduces a new kind of number systems on p-adic integers which is

inspired by the well-known 3n+ 1 conjecture of Lothar Collatz. A p-adic system is a piecewise
function on Zp which has branches for all residue classes modulo p and whose dynamics can be

used to define digit expansions of p-adic integers which respect congruency modulo powers of

p and admit a distinctive “block structure”. p-adic systems generalize several notions related
to p-adic integers such as permutation polynomials and put them under a common framework,

allowing for results and techniques formulated in one setting to be transferred to another. The

general framework established by p-adic systems also provides more natural versions of the
original Collatz conjecture and first results could be achieved in the context. A detailed formal

introduction to p-adic systems and their different interpretations is given. Several classes of

p-adic systems defined by different types of functions such as polynomial functions or rational
functions are characterized and a group structure on the set of all p-adic systems is established,

which altogether provides a variety of concrete examples of p-adic systems. Furthermore, p-
adic systems are used to generalize Hensel’s Lemma on polynomials to general functions on Zp,

analyze the original Collatz conjecture in the context of other “linear-polynomial p-adic systems”,

and to study the relation between “polynomial p-adic systems” and permutation polynomials
with the aid of “trees of cycles” which encode the cycle structure of certain permutations of

Zp. To outline a potential roadmap for future investigations of p-adic systems in many different

directions, several open questions and problems in relation to p-adic systems are listed.
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1. Introduction and motivation

The aim of this paper is to introduce a new kind of number systems on the p-adic integers
denoted by p-adic systems and to derive first non-trivial results. It is the author’s hope that
p-adic systems will provide a useful framework to describe several deeply mysterious phenomena
(a central one being the famous Collatz conjecture or 3n+ 1-problem) which will allow to express
related results thus far contained in conceptionally and notationally isolated papers in terms of a
common language, but also to gain entirely new results and insights. While problems such as the
Collatz conjecture may remain a distant goal at the horizon, embedding them into a set of related
yet more accessible questions will, hopefully, indicate a path in the right direction.

In order to motivate the definition of p-adic systems, we will start by repeating the statement
of the 3n+ 1-problem formulated by the German mathematician Lothar Collatz in 1937. For that
we define the transformation

FC : N→ N.(1.1)

n 7→

{
n
2 if n ≡ 0 mod 2
3n+1

2 if n ≡ 1 mod 2

Applying FC repeatedly, one finds that the orbit of any natural number up to 260 [46, 51] eventually
reaches 1 where it enters the 2-cycle (1, 2). Remarkably, despite the extremely simple formulation
and high popularity of the problem (for an extensive overview of related work see [33, 34, 35, 58]
which can all be found in the book [36], and [58]), it has remained unproven for more than 80 years
and it appears that we are no closer to a solution than Lothar Collatz was when he first found it.
To continue we consider the slightly modified transformation

F2 : N0 → N0.(1.2)

n 7→

{
n
2 if n ≡ 0 mod 2
n−1
2 if n ≡ 1 mod 2

It is of course the transformation which can be used to compute the standard binary expansion
of a natural number by taking its orbit modulo 2. Obviously, the orbit of any natural number
under F2 eventually enters the 1-cycle (0). By simply replacing the linear polynomial 3x + 1 by
another linear polynomial (x − 1) the question for the ultimate behavior of the corresponding
transformation changes from extremely hard to trivial. Yet, there is one decisive property which
the orbits produced by both transformations have in common, i.e. that they can be used to define a
“number system” on the p-adic integers that satisfies a rather natural condition. It is this property
which will be central to the definition of p-adic systems. Clearly, the definitions of both FC and F2

naturally extend to the 2-adic integers (for an introduction to p-adic integers see e.g. [40, 20, 25])
with the only parts to change being the domains and codomains:

FC : Z2 → Z2, F2 : Z2 → Z2.(1.3)

n 7→

{
n
2 if n ≡ 0 mod 2
3n+1

2 if n ≡ 1 mod 2
n 7→

{
n
2 if n ≡ 0 mod 2
n−1
2 if n ≡ 1 mod 2

The term “number system” above is put in quotation marks, as there is no strict definition of
what a number system “of” or “on” some set X actually is. To the author’s mind it is something
that can be used to give unique “names” (in our case infinite strings over a finite alphabet) to all
elements of said set X which, ideally, are not chosen at random but follow certain rules and encode
some information on the represented elements. Examples would be the usual binary or decimal
representations of natural numbers which come with easy algorithms that allow fast addition and
multiplication of the represented numbers but, somewhat mysteriously, are of no good use when
trying to obtain the factors of, say, the product of two large primes. The information on the factors
is encoded in the digits of the product, but cannot easily be extracted. Alternatively, a natural
number can be represented by giving a list of its prime factors which could also be considered a
number system on N. In this setting multiplication and factorization are straight forward, but
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in return addition is just as hard as factorization is in the other setting. That there appears to
be no number system allowing for fast addition, multiplication and factorization all at once, is a
phenomenon at the heart of many of the biggest open problems in mathematics today. The idea
of defining number systems on arbitrary sets X by iterative application of some transformation
on X led to the very general definition of fibred systems in [47] (cf. also [7]). Examples of
fibred systems which have been the focus of extensive research in recent years and decades are
positional notation systems (standard and non-standard), double base number systems [15, 14],
continued fractions, β-expansions [45, 41, 9, 10, 18, 17, 39, 50], canonical number systems (CNS)
[29, 42, 24, 22, 23, 31, 19, 44, 30, 32], and shift radix systems [1, 2, 3, 4, 12, 28, 55, 56, 43, 57].

In our setting the “names” of p-adic integers are of course obtained by taking the orbits modulo
2 which, in the case of F2, yields the usual binary representation. The tables below show the initial
parts of the orbits (which we will refer to as sequences in the following) of several natural numbers
as well as the resulting “names” ((digit)-expansions).

1 1 2 1 2 · · ·
2 2 1 2 1 · · ·
3 3 5 8 4 · · ·
4 4 2 1 2 · · ·
5 5 8 4 2 · · ·
6 6 3 5 8 · · ·
7 7 11 17 26 · · ·
8 8 4 2 1 · · ·
9 9 14 7 11 · · ·

10 10 5 8 4 · · ·
11 11 17 26 13 · · ·
12 12 6 3 5 · · ·
13 13 20 10 5 · · ·
14 14 7 11 17 · · ·
15 15 23 35 53 · · ·
16 16 8 4 2 · · ·

.

..
.
..

.

..
.
..

.

..
. . .

S(FC) 0 1 2 3 · · ·

1 1 0 1 0 · · ·
2 0 1 0 1 · · ·
3 1 1 0 0 · · ·
4 0 0 1 0 · · ·
5 1 0 0 0 · · ·
6 0 1 1 0 · · ·
7 1 1 1 0 · · ·
8 0 0 0 1 · · ·
9 1 0 1 1 · · ·

10 0 1 0 0 · · ·
11 1 1 0 1 · · ·
12 0 0 1 1 · · ·
13 1 0 0 1 · · ·
14 0 1 1 1 · · ·
15 1 1 1 1 · · ·
16 0 0 0 0 · · ·

.

..
.
..

.

..
.
..

.

..
. . .

D(FC) 0 1 2 3 · · ·

1 1 0 0 0 · · ·
2 2 1 0 0 · · ·
3 3 1 0 0 · · ·
4 4 2 1 0 · · ·
5 5 2 1 0 · · ·
6 6 3 1 0 · · ·
7 7 3 1 0 · · ·
8 8 4 2 1 · · ·
9 9 4 2 1 · · ·

10 10 5 2 1 · · ·
11 11 5 2 1 · · ·
12 12 6 3 1 · · ·
13 13 6 3 1 · · ·
14 14 7 3 1 · · ·
15 15 7 3 1 · · ·
16 16 8 4 2 · · ·

...
...

...
...

...
. . .

S(F2) 0 1 2 3 · · ·

1 1 0 0 0 · · ·
2 0 1 0 0 · · ·
3 1 1 0 0 · · ·
4 0 0 1 0 · · ·
5 1 0 1 0 · · ·
6 0 1 1 0 · · ·
7 1 1 1 0 · · ·
8 0 0 0 1 · · ·
9 1 0 0 1 · · ·

10 0 1 0 1 · · ·
11 1 1 0 1 · · ·
12 0 0 1 1 · · ·
13 1 0 1 1 · · ·
14 0 1 1 1 · · ·
15 1 1 1 1 · · ·
16 0 0 0 0 · · ·

...
...

...
...

...
. . .

D(F2) 0 1 2 3 · · ·

Table 1. Sequences and expansions of natural numbers as given by FC and F2.

It can be seen that the tables of expansions of both FC and F2 admit a specific block structure
which translates to a very natural condition on any number system on the p-adic integers:

the first k elements of the expansions of m and n coincide ⇔ m ≡ n mod pk.(block)

It is this block structure which is the essential condition in the definition of p-adic systems. We
will provide a formal definition in the upcoming section, but conclude this introduction by a verbal
description and by a summary of the above observations: A p-adic system is a number system
on p-adic integers which assigns an infinite string (expansion) over the alphabet {0, . . . , p− 1}
(the digits) to any element of Zp such that the complete “table of expansions” satisfies the block
property. The main goal of studying p-adic system is to understand which parameters control what
kind of expansions one can get on specific subsets of Zp, such as the integers or rational numbers
in Zp. Simple changes in the definition of a p-adic system (such as going from F2 to FC) can shift
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questions on the resulting expansions from trivial to very hard. The hope is that by studying the
entirety of p-adic systems one can find examples of intermediate difficulty which may shed some
light on the true nature of the hard problems and help identify the “right questions to ask”. A
possible list of such examples and questions will be provided in the upcoming sections and it is the
author’s hope that they will arouse the curiosity of many and convince them to join in a common
effort to approach them.

Structure. This manuscript is structured as follows:

Section 1 summarizes the motivation and philosophy behind p-adic systems.

Section 2 provides rigorous definitions of basic concepts and notions which are used throughout
the paper, up to and including the central objects “p-adic systems”.

Section 3 lists different interpretations (“ordinary functions on Zp with block property”, “p-digits
tables with block property”, and “p-adic permutations”) of p-adic systems and outlines how to
translate between these different viewpoints. Furthermore, a group structure on the set of p-adic
systems is established and the notion of “trees of cycles” is introduced.

Section 4 provides a characterization of p-adic systems which considers the defining functions
independently from one another. This allows for the complete characterization of all p-adic sys-
tems which are defined by polynomials in Zp[x], Qp[x] and certain rational functions on Zp. These
classes provide a multitude of concrete examples of p-adic systems.

Section 5 shows how p-adic systems can be used to generalize Hensel’s Lemma on polynomials
to general functions on Zp in two different ways. The notion of “p-fibred rational functions” is
introduced and investigated here.

Section 6 provides general results on periodic and ultimately periodic digit expansions of “con-
tractive” and “expansive” p-adic systems.

Section 7 studies the class of “linear-polynomial p-adic systems” which are closest to the original
Collatz transformation. Several conjectures which generalize the Collatz conjecture within the
framework of p-adic systems along with first related results are listed here.

Section 8 describes the relation between p-adic systems and permutation polynomials and ana-
lyzes properties of the trees of cycles of p-adic systems from different classes.

Section 9 provides a list of open questions and problems related to p-adic systems.

In the appendix a list and short summary of all theorems (lemmas, corollaries, examples, etc.)
can be found, as well as a list of all used symbols in order of first appearance.

2. Notation and definitions

The purpose of this somewhat technical section is to provide a solid conceptual and notational
foundation for the clear and efficient, but at the same time comprehensible discussion of p-adic
systems.

Basic notation. For any set A and any set of predicates P we let

A(P) := {a ∈ A | ∀ P ∈ P : P (a)}(2.1)

denote the set of all elements of A which satisfy all predicates in P. If P = {P1, . . . , Pn} for some
n ∈ N0, we also define the shorter version A(P1, . . . , Pn) := A(P). For a, b ∈ R ∪ {±∞} let

Ja, bK := {n ∈ Z | a ≤ n ≤ b} , b := J0, b− 1K, b := J0, bK.(2.2)

For sets A and B let BA denote the set of all mappings from A to B, respectively the set of all
indexed families with index set A and entries in B. For n ∈ N0 let also Bn := Bn. For any set A
we may identify elements of A, {{a} | a ∈ A}, and A1 by

a 7→ {a} 7→ (a).(2.3)

Throughout the paper we will make heavy use of the modulo function which shall be denoted by
% (C++ notation). Specifically, for 0 6= m ∈ Z and a ∈ Z, a%m denotes the unique element of
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|m| satisfying a − a%m ≡ 0 mod m. Additionally, for any 2 ≤ p ∈ N, a =
∑∞
i=0 aip

i ∈ Zp with

ai ∈ p for all i ∈ N0, and k ∈ N0 let a%pk :=
∑k−1
i=0 aip

i ∈ pk.

Sequences. In order to deal with orbits and digit expansions, we introduce the notion of sequences:
the elements of any set Ak, where A is a set and k ∈ N0 ∪ {∞}, are called sequences. The class of
all sequences shall be denoted by S. For any sequence S ∈ Ak we set |S| := k, the length or size
of S. For any set A we define S[A] to be the subsequence of S consisting of the entries with indices
in A ∩ |S| in increasing order. Furthermore, for i, j ∈ R ∪ {±∞} we define the shorter version
S[i, j] := S[Ji, jK]. Note that by Eqn. (2.3), S[k] is defined for all k ∈ |S| (k 7→ {k}) and may be
interpreted as the subsequence of length 1 of S which consists of the entry of S with index k, or
as this entry itself (k 7→ (k)).
We define the following predicates on S (S, T ∈ S, A set):

lenA(S) ⇔ |S| ∈ A S has length in A or, if A = {a}, S is of length a(2.4)

fin(S) ⇔ lenN0
(S) S is finite, otherwise infinite(2.5)

emp(S) ⇔ len0(S) S is empty, otherwise non-empty(2.6)

bndA(S)⇔ ∀ n ∈ |S| : S[n] ∈ A S is A-bounded(2.7)

preT (S) ⇔ S[|T |] = T S has prefix T(2.8)

sufT (S) ⇔ S[|S| − |T | , |S| − 1] = T S has suffix T(2.9)

Multiplication S ·T of two sequences S and T with S being finite is defined by concatenation. If S
is infinite and T is empty we set S ·T := S and T ·S := S. Being the neutral element of sequence
multiplication, the empty sequence shall be the result of empty products. The n-th power Sn of
a finite sequence S is the n-fold multiplication of S by itself. If S 6= (), then S∞ is the infinite
periodic sequence with period S, otherwise we set ()∞ := (). For an infinite sequence S we define
I (S) ∈ S to be the initial part of S and P (S) ∈ S(fin) to be the periodic part of S, i.e. I (S) and
P (S) are chosen shortest possible (with I (S) having the precedence) such that S = I (S) ·P (S)

∞
.

We define the following additional predicates on S (S ∈ S):

per(S) ⇔ ¬fin(S) ∧ emp(I (S)) S is (purely) periodic(2.10)

uper(S)⇔ ¬fin(S) ∧ fin(I (S)) S is ultimately periodic(2.11)

aper(S) ⇔ ¬fin(I (S)) S is aperiodic(2.12)

Any function f : A → B between arbitrary sets A and B extends naturally to S(bndA) by
S 7→ (f(S[k]))k∈|S| ∈ S(bndB) (entry-wise application of f to S).

Sequence tables. The entirety of orbits of a transformation will be collected in “tables” (cf.
Table 1) which motivates the definition of sequence tables: the elements of any set S(bndB , lenk)A,
where A and B are sets and k ∈ N0 ∪ {∞}, are called sequence tables. The class of all sequence
tables shall be denoted by S. For any sequence table S ∈ S(bndB , lenk)A we set dom(S) := A,
the domain of S, and |S| := k, the length or size of S. For any S ∈ S and any n ∈ dom(S)
let S[n] denote the n-th entry of S (the n-th row of S or S-sequence of n). For any subset A
of dom(S) we define S|A := (S[n])n∈A, the restriction of S to A, and for any arbitrary set A
we define SJAK := (S[n][A])n∈dom(S). Furthermore, for i, j ∈ R ∪ {±∞} we define the shorter
version SJi, jK := SJJi, jKK. Multiplication and exponentiation of sequences as well as entry-wise
applications of functions to sequences carry over to sequence tables (row-wise).
We define the following predicates on S (S ∈ S, A set):

domA(S)⇔ dom(S) = A S has domain A(2.13)

lenA(S) ⇔ |S| ∈ A S has length in A or, if A = {a}, S is of length a(2.14)

fin(S) ⇔ lenN0
(S) S is finite, otherwise infinite(2.15)

emp(S) ⇔ len0(S) S is empty, otherwise non-empty(2.16)

bndA(S) ⇔ ∀ n ∈ dom(S) : bndA(S[n]) S is A-bounded(2.17)
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p-digit tables. In addition to sequence tables, we define the specialised p-digit tables which will be
used to represent collections of expansions. Let 2 ≤ p ∈ N. An element D of any set S(domA,bndp),

where A ⊆ Zp1, is called p-digit table if it satisfies the condition

∀ n ∈ dom(D) : D[n][0] = n%p.(2.18)

The set of all p-digit tables shall be denoted by Dp. For any D ∈ Dp and n ∈ dom(D) the D-digit
expansion of n is given by D[n] and for k ∈ N0 the k-th digit of n with respect to D is given by
D[n][k].
We define the following predicates on Dp (D ∈ Dp, K ⊆ N0) (cf. Table 1):

w-blockK(D)⇔ ∀ k ∈ K : ∀m,n ∈ dom(D) : D has the weak block property at K(2.19)

m ≡ n mod pk ⇒ D[m][k] = D[n][k]

w-block(D) ⇔ w-blockN0(D) D has the weak block property(2.20)

blockK(D) ⇔ ∀ k ∈ K : ∀m,n ∈ dom(D) : D has the block property at K(2.21)

m ≡ n mod pk ⇔ D[m][k] = D[n][k]

block(D) ⇔ blockN0(D) D has the block property(2.22)

p-fibred functions. The transformations FC and F2 defined in the previous section are both
piecewise functions on Z2 with branches for both residue classes modulo 2. Throughout the paper
we will use a very useful notation for functions given in this way. Let 2 ≤ p ∈ N. The elements
of any set S(bnd(Zp)A , lenp), where A ⊆ Zp, are called p-fibred functions, i.e. a p-fibred function
F = (F[0], . . . ,F[p−1]) is a p-tuple of functions F[r] : A→ Zp, r ∈ p, on some fixed subset A of the
p-adic integers. The set of all p-fibred functions shall be denoted by Fp. For any p-fibred function
F ∈ S(bnd(Zp)A , lenp) we set dom(F) := A, the domain of F. We interpret F itself as a function
on its domain in the following way:

F : dom(F)→ Zp(2.23)

n 7→ F[n%p](n)− F[n%p](n)%p

p

where % is the modulo function (C++ notation). Note that the subtrahend in the numerator of
the fraction above has the mere function to guarantee that the result is divisible by p. For any
subset A of dom(F) we define F|A := (F[0]|A, . . . ,F[p − 1]|A), the restriction of F to A. For
any ordinary function on a subset A of Zp there is a p-fibred function showing the same behavior
(i.e. the images of all elements of A under both the ordinary function and the p-fibred function
coincide). If f : A→ Zp is such an ordinary function, then one such p-fibred function showing the
same behavior is given by

(pf, . . . , pf).(2.24)

In general (indeed, in any case) there are several different p-fibred functions representing a given
ordinary function. “Representing the same ordinary function” defines an equivalence relation on
Fp:

F ∼p G ⇔ dom(F) = dom(G) ∧ ∀ n ∈ dom(F) : F(n) = G(n).(2.25)

1Note that many authors define p-adic integers only for prime numbers p. The main reason is that if p has at
least two different prime factors, then the ring Zp is no domain anymore making it less useful in many situations.

However, in the setting of this paper the existence of zero divisors does not cause any problems and we thus do

not limit our definition to prime numbers. Note that Zp ' Zp1 × · · · × Zp` where p1, . . . , p` are the distinct prime

factors of p. In the appendix a short discussion of the issue can be found.
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For every equivalence class of ∼p there is a canonical representative fixed by the following predicate
on Fp (F ∈ Fp):

canf(F)⇔ ∀ r ∈ p : ∀ n ∈ dom(F) : F is in canonical form(2.26)

F[r](n) ∈

{
pZp if n ≡ r mod p

{0} if n 6≡ r mod p

The canonical representative of the equivalence class of a p-fibred function F is called the canonical
form of F. In some cases it is useful to consider the following weaker predicate on Fp (F ∈ Fp):

w-canf(F)⇔ ∀ r ∈ p : F[r]((r + pZp) ∩ dom(F)) ⊆ pZp F is in weak canonical form(2.27)

If G is a p-fibred function in weak canonical form and F ∼p G, then G is called a weak canonical
form of F. If F is a p-fibred function in weak canonical form, the definition of its corresponding
ordinary function simplifies to

F : dom(F)→ Zp.(2.28)

n 7→ F[n%p](n)

p

We define the following predicates on Fp (F ∈ Fp, A set):

domA(F) ⇔ dom(F) = A F has domain A(2.29)

bndA(F) ⇔ F(dom(F)) ⊆ A F is A-bounded(2.30)

closed(F)⇔ bnddom(F)(F) F is closed(2.31)

For any closed p-fibred function F we call S(F) :=
((

Fk(n)
)
k∈N0

)
n∈dom(F)

∈ S(domdom(F),¬fin) the

F-sequence table, and D(F) := S(F)%p ∈ Dp(domdom(F),¬fin) the F-digit table. For n ∈ dom(F)
the F-sequence of n is given by the S(F)-sequence of n, the F-digit expansion of n by the D(F)-digit
expansion of n, and for k ∈ N0 the k-th digit of n with respect to F is given by the k-th digit of n
with respect to D(F).
The predicates w-blockK , w-block, blockK , and block carry over to Fp(closed) by D(F).

p-adic systems. We are now in the position to define our central object of interest. A p-adic
system is a p-fibred function with domain Zp (which implies that it is closed) which has the block

property. The set of all p-adic systems is thus given by Fp := Fp(domZp ,block).
Following the definition above we are able to write

FC := (x, 3x+ 1)(2.32)

F2 := (x, x− 1) ∼p (x, x).(2.33)

(x, x− 1) is a weak canonical form of (x, x) and the canonical form of FC is given by

(x(x ≡ 0 mod 2 ? 1 : 0), (3x+ 1)(x ≡ 1 mod 2 ? 1 : 0))(2.34)

where (P (x) ? f(x) : g(x)) is a function on Zp which reads “if P (x) then f(x), else g(x)” (again,
C++ notation). Both FC and F2 have the block property (as we will show later, Corollary 4.11 (2))
and are thus examples of p-adic systems.

3. Three and a half interpretations of p-adic systems

In this sections we will establish different ways to think about p-adic systems, all of which are
valid interpretations in there own right along the one which we ultimately chose to be the formal
definition. As with any introduction to a mathematical object, one has to decide which description
to call “definition” and which “characterization” instead. Recall that the questions on p-adic
systems we are most interested in are those on their ultimate behavior (such as whether the orbits
of all natural numbers under FC actually end up in 1). It is in this regard that the mentioned
interpretations will be equivalent.
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The formal definition: p-fibred functions with block property. We begin by repeating the
formal definition which would be the first interpretation in our list of three and a half: A p-adic
system is a p-fibred function F with domain Zp, i.e. a piecewise function on Zp with branches for all
residue classes modulo p, such that the p-digit table D(F) given by the F-digit expansions satisfies
the block property: D(F)[m][k] = D(F)[n][k] if and only if m ≡ n mod pk for all k ∈ N0 and for all
m,n ∈ Zp. According to this definition a p-adic system is a “dynamical object” as the property we
are most interested in (the corresponding digit expansions) is defined by the dynamical process of
repeatedly applying the p-adic system. We recall that ∼p (cf. Eqn. (2.25)) defines an equivalence
relation on Fp (we provide a formal proof in the lemma below), where equivalent p-fibred functions
show exactly the same dynamical behavior and thus define equal p-digit tables. Since the p-digit
tables are what we really care about, one might consider a p-adic system to be a whole equivalence
class of ∼p instead of a single p-fibred function.

Lemma 3.1. Let 2 ≤ p ∈ N and F ∈ Fp. Then, there is a unique Fc ∈ Fp such that Fc is
a canonical form of F. In this case S(Fc) = S(F) and D(Fc) = D(F). If G is another p-fibred
function and Gc its canonical form, then F ∼p G if and only if Fc = Gc. In particular, ∼p is an
equivalence relation on Fp and every equivalence class contains a unique canonical form.

Proof. Let Fc ∈ Fp with

Fc[r] : dom(F)→ dom(F)(3.1)

n 7→

{
F[r](n)− F[r](n)%p if n ≡ r mod p

0 if n 6≡ r mod p

for all r ∈ p. Then, Fc is a canonical form of F and its uniqueness follows by construction. Clearly,
S(Fc) = S(F) and hence D(Fc) = D(F).

Let G ∈ Fp. If F ∼p G, then dom(F) = dom(G), and for all r ∈ p and all n ∈ (r+pZp)∩dom(F)
we get

Fc[r](n) = F[r](n)− F[r](n)%p = pF(n) = pG(n) = G[r](n)−G[r](n)%p = Gc[r](n)(3.2)

and hence Fc = Gc.
If, however, Fc = Gc, then again dom(F) = dom(G) and for all r ∈ p and all n ∈ (r + pZp) ∩

dom(F) we get

F(n) =
F[r](n)− F[r](n)%p

p
=

Fc[r](n)

p
=

Gc[r](n)

p
=

G[r](n)−G[r](n)%p

p
= G(n)(3.3)

and hence F ∼p G. �

From now on we identify elements of Fp and Fp/∼p by F 7→ [F]∼p , e.g. [F]∼p(n) = F(n), D([F]∼p) =
D(F), etc.

Ordinary functions on Zp with block property. This alternative interpretation accounts for
the “half” in the title of this section and has already been mentioned in the formal definition
of p-adic systems in the previous section. Any p-fibred function defines an ordinary function on
its domain (Eqn. (2.23)) and, vice versa, any ordinary function on some subset of Zp is equal to
the ordinary function defined by some p-fibred function (Eqn. (2.24)). A class of the equivalence
relation ∼p consists of exactly those p-fibred functions which represent the same ordinary function.
For any A ⊆ Zp there is thus a one-to-one correspondence between Fp(domA)/∼p and (Zp)A. The
distinction between p-fibred functions and ordinary functions is therefore only a matter of notation
and the question that remains is: how does the block property of p-fibred functions translate to
ordinary functions? The answer is given by the following Lemma.

Lemma 3.2. Let 2 ≤ p ∈ N, F ∈ Fp(closed), and k ∈ N ∪ {∞}. Then,

(1) (∀ ` ∈ J1, kK : ∀m,n ∈ dom(F) with m ≡ n mod p : m ≡ n mod p` ⇒ F(m) ≡ F(n) mod p`−1)
⇒ w-blockk(F)

(2) (∀` ∈ J1, kK : ∀m,n ∈ dom(F) with m ≡ n mod p : m ≡ n mod p` ⇔ F(m) ≡ F(n) mod p`−1)
⇔ blockk(F).
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Before we give a proof of the lemma, we analyze its meaning. (2) completely characterizes when
an ordinary function f : A→ A, A ⊆ Zp (which is the function given by the p-fibred function F in
the lemma with A = dom(F)) has the block property by only considering a single application of
f . However, (1) only provides a sufficient condition for the weak block property as the following
example shows.

Example 3.3. Let F ∈ F2(domZ2
) with F[0](n) = (n = 8 ? 4 : 0) and F[1](n) = 2 for all n ∈ Z2.

Then, D(F) = ((n%2)∞)n∈Z2 and, hence, w-block(F). At the same time we get 0 ≡ 8 mod 23 but
F(0) = 0 6≡ 2 = F(8) mod 22.

We will show later (Example 4.2) that no characterization of the weak block property of the above
kind can exist that is both necessary and sufficient.

Proof of Lemma 3.2.
(1): We prove w-block`(F) for all ` ∈ k by induction on `: clearly, w-block0(F). Assume ` ∈
J1, kK and that the statement holds for ` − 1. Let m,n ∈ dom(F) with m ≡ n mod p`. Then
m ≡ n mod p and thus

D(F)[m][0] = D(F)[n][0](3.4)

by definition of D(F). Furthermore,

m ≡ n mod p` ⇒ F(m) ≡ F(n) mod p`−1(3.5)

(ind. hyp.) ⇒ D(F)[F(m)][0, `− 2] = D(F)[F(n)][0, `− 2](3.6)

⇔ D(F)[m][0] ·D(F)[F(m)][0, `− 2] = D(F)[n][0] ·D(F)[F(n)][0, `− 2](3.7)

⇔ D(F)[m][`] = D(F)[n][`](3.8)

which implies w-block`(F).
(2): We prove “ ⇒” by showing block`(F) for all ` ∈ k by induction on `: clearly, block0(F).
Assume ` ∈ J1, kK and that the statement holds for `− 1. Let m,n ∈ dom(F) with m ≡ n mod p`.
Then m ≡ n mod p and thus

D(F)[m][0] = D(F)[n][0](3.9)

as before. Furthermore,

m ≡ n mod p` ⇔ F(m) ≡ F(n) mod p`−1(3.10)

(ind. hyp.) ⇔ D(F)[F(m)][0, `− 2] = D(F)[F(n)][0, `− 2](3.11)

⇔ D(F)[m][0] ·D(F)[F(m)][0, `− 2] = D(F)[n][0] ·D(F)[F(n)][0, `− 2](3.12)

⇔ D(F)[m][`] = D(F)[n][`](3.13)

which implies block`(F).
For the proof of “⇐” let m,n ∈ dom(F) with m ≡ n mod p. Then,

D(F)[m][0] = D(F)[n][0].(3.14)

Furthermore,

m ≡ n mod p` ⇔ D(F)[m][`] = D(F)[n][`](3.15)

⇔ D(F)[m][0] ·D(F)[F(m)][0, `− 2] = D(F)[n][0] ·D(F)[F(n)][0, `− 2](3.16)

⇔ D(F)[F(m)][0, `− 2] = D(F)[F(n)][0, `− 2](3.17)

⇔ F(m) ≡ F(n) mod p`−1.(3.18)

�

If we denote by Zp the set of all functions f : Zp → Zp which satisfy

∀ k ∈ N : ∀m,n ∈ Zp : m ≡ n mod pk ⇔ f(m) ≡ f(n) mod pk−1,(3.19)
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as a consequence, there is a bijection between Fp/∼p and Zp given by

Fp/∼p ↔ Zp.(3.20)

F 7→ (F : Zp → Zp)
(pf, . . . , pf)← [ f

p-digit tables with block property. As argued above, both of the previous interpretations
consider p-adic systems to be “dynamical objects”. The dynamical behavior of a (closed) p-
fibred function is used to define a “static object”, the corresponding p-digit table, whose structure
determines whether the p-fibred function is considered a p-adic system (which is the case precisely
if the p-digit table has the block property). Surprisingly, it is also possible to go in the other
direction, i.e. start out with the static object and use it to define a dynamical one. Indeed, there
is a one-to-one correspondence between Fp/∼p and Dp := Dp(domZp ,¬fin,block). Clearly, every
p-adic system F defines an infinite p-digit table with block property by its F-digit table D(F) and
any p-adic system that is equivalent to F defines the same p-digit table. The other two facts implied
by the existence of the mentioned one-to-one correspondence are probably less obvious: the p-digit
tables of two p-adic systems F and G are identical if and only if F and G are equivalent and every
infinite p-digit table with domain Zp and block property is the F-digit table of some p-adic system
F. In the following we will prove just that and we begin by interpreting any p-digit table as a
multivalued function on its domain. We will show that if D is infinite and has domain Zp and the
block property, then this function actually defines the p-adic system we are looking for. For any
D ∈ Dp let

D : dom(D)→ P(dom(D))(3.21)

n 7→ {m ∈ dom(D) | D[m][0, |D| − 2] = D[n][1, |D| − 1]}
where P(A) denotes the power set of a set A. What D (as a function) does is, it takes an element
n from its domain, drops the first entry (entry with index 0) from the D-digit expansion of n,
and returns all elements of its domain which have the resulting sequence as their initial D-digit
expansion. Using this notation we continue with a characterization of all p-fibred functions which
define a given p-digit table.

Theorem 3.4. Let 2 ≤ p ∈ N and D ∈ Dp. Then, for every F ∈ Fp(domdom(D), closed) we
get D(F)J|D|K = D if and only if F(n) ∈ D(n) for every n ∈ dom(D). In particular, there is a
F ∈ Fp(domdom(D), closed) such that D(F)J|D|K = D if and only if D(n) 6= ∅ for every n ∈ dom(D).

Proof. For “⇒” let n ∈ dom(D) and observe that D(F)[n][1,∞] = D(F)[F(n)] which implies that
D[n][1, |D| − 1] = D(F)[n][1, |D| − 1] = D(F)[F(n)][0, |D| − 2] = D[F(n)][0, |D| − 2]. Therefore,
F(n) ∈ D(n).

To show “⇐” we prove D(F)JkK = DJkK for all k ∈ J1, |D|K by induction on k. If k = 1 then
this is clearly true by the definition of p-digit tables. Now assume k ≥ 2 and let n ∈ dom(D).
We get D(F)Jk − 1K = DJk − 1K by the induction hypothesis. Furthermore, D(F)[n][k − 1] =
D(F)[F(n)][k − 2] = D[F(n)][k − 2] = D[n][k − 1]. Thus, D(F)JkK = DJkK and consequently
D(F)J|D|K = D. �

It is clear from the previous theorem that in order to get a better understanding of the relation
between p-adic systems and p-digit tables with block property, we need to investigate the structure
of the sets D(n). Before doing so, we need to prove two basic but useful lemmas on finite p-digit
tables with block property at their lengths. From now on we interpret any complete residue system
(CRS) R ⊆ Zp modulo pk (i.e. |R| = pk ∈ N and no two distinct elements of R are congruent
modulo pk, e.g. R = pk) as a function R : Zp → R which maps any n ∈ Zp to the unique R(n) ∈ R
with n ≡ R(n) mod pk.

Lemma 3.5. Let 2 ≤ p ∈ N, k ∈ N, D ∈ Dp(lenk,blockk), R ⊆ dom(D) a CRS modulo pk, and
D ∈ S(bndp, lenk). Then there is a unique n ∈ R such that D[n] = D.

Proof. Since
∣∣S(bndp, lenk)

∣∣ = |R| = pk and blockk(D), every sequence in S(bndp, lenk) occurs
exactly once among the sequences D[r], r ∈ R. �
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Lemma 3.6. Let 2 ≤ p ∈ N, k, ` ∈ N0 with k < `, D ∈ Dp(len`,block`,w-blockk) such that
dom(D) contains a CRS modulo p`. Then blockk(D).

Proof. Let m,n ∈ dom(D) such that D[m][k] = D[n][k] =: D and assume m 6≡ n mod pk.
Furthermore, let R ⊆ dom(D) be a CRS modulo p` and

M :=
{
r ∈ R | r ≡ m mod pk ∨ r ≡ n mod pk

}
.(3.22)

Then |M | = 2p`−k and because of w-blockk(D), we get D[r][k] = D for every r ∈ M . Thus,
{D[r] | r ∈ R} can have at most p` − p`−k elements, which contradicts Lemma 3.5 and hence
implies blockk(D). �

The following theorem describes the structure of the sets D(n) in dependence of the structure
of D.

Theorem 3.7. Let 2 ≤ p ∈ N, k ∈ N, D ∈ Dp(lenk), R,S ⊆ dom(D) CRSs modulo pk and pk−1

respectively, and n ∈ dom(D). Then,

(1) w-blockk(D) ⇒ D(n) = (D(R(n)) ∩R+ pkZp) ∩ dom(D)
In particular: (1) ∀m ∈ (n+ pkZp) ∩ dom(D) : D(n) = D(m)

(2) D(n) = (D(n) + pkZp) ∩ dom(D)
(2) w-block{k,k−1}(D) ⇒ D(n) = (D(R(n)) ∩ S + pk−1Zp) ∩ dom(D)

In particular: D(n) = (D(n) + pk−1Zp) ∩ dom(D)
(3) blockk(D) ⇒ |D(n) ∩R| = p
(4) blockk(D) ∧ w-blockk−1(D)⇒ ∀ l,m ∈ D(n) : l ≡ m mod pk−1

In particular: |D(n) ∩ S| = 1 and
D(n) = (sR(n) + pk−1Zp) ∩ dom(D) where
sR(n) is the unique element of D(n) ∩ S.

Before we give a proof of the theorem, we will discuss its claims. (1) states that if D has the
weak block property at k, then in order to know the structure of any D(n), it suffices to know the
structures of D(r) within the finite set R alone, where r ∈ R is again one element of only finitely
many. In addition, the “In particular” part states that D(n) is closed under addition of multiples
of pk (if the result lands in the domain of D). (2) and (3) give even more precise information on
the structure of D(n) if more is known on the structure of D. The results are stated in terms of
arbitrary CRS R and S. To get a better understanding of the theorem, it is helpful to consider
the most important special case dom(D) ⊇ N0, R = pk, S = pk−1, and hence R(n) = n%pk for all
n ∈ Zp. As examples consider the three 2-digit tables below which correspond to the three cases
treated in the theorem. We get

D1(29) = (D1(5) ∩ 8 + 8Z2) ∩ N0 = {1, 3, 7}+ 8N0(3.23)

D2(29) = (D2(5) ∩ 8 + 8Z2) ∩ N0 = {0, 2}+ 8N0 (note: |{0, 2}| = 2)(3.24)

D3(29) = (D3(5) ∩ 4 + 4Z2) ∩ N0 = 2 + 4N0(3.25)

just as claimed.

0 0 0 0
1 1 0 0
2 0 0 0
3 1 0 0
4 0 1 0
5 1 1 0
6 0 1 0
7 1 0 0
8 0 0 0
9 1 0 0
...

...
...

...

D1 0 1 2

0 0 0 0
1 1 0 1
2 0 0 1
3 1 1 0
4 0 1 0
5 1 0 0
6 0 1 1
7 1 1 1
8 0 0 0
9 1 0 1
...

...
...

...

D2 0 1 2

0 0 0 0
1 1 0 0
2 0 1 0
3 1 1 0
4 0 0 1
5 1 0 1
6 0 1 1
7 1 1 1
8 0 0 0
9 1 0 0
...

...
...

...

D3 0 1 2

Table 2. Three 2-digit tables of length 3 with domain N0. The initial block of
8 rows is supposed to repeat periodically in all cases. They satisfy w-block3(D1),
block3(D2), and block3(D3) ∧ w-block2(D3).
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Proof of Theorem 3.7.
(1):

D(n) = {m ∈ dom(D) | D[m][0, k − 2] = D[n][1, k − 1]}(3.26)

(w-blockk(D)) = {m ∈ dom(D) | D[R(m)][0, k − 2] = D[R(n)][1, k − 1]}(3.27)

=
(
{m ∈ R | D[m][0, k − 2] = D[R(n)][1, k − 1]}+ pkZp

)
∩ dom(D)(3.28)

=
(
D(R(n)) ∩R+ pkZp

)
∩ dom(D).(3.29)

If m ∈ (n+ pkZp) ∩ dom(D) then, R(m) = R(n) and

D(n) = (D(R(n)) ∩R+ pkZp) ∩ dom(D) = (D(R(m)) ∩R+ pkZp) ∩ dom(D) = D(m)(3.30)

which proves (1) of the “In particular” part. Furthermore, since R(n) ∈ (n+ pkZp) ∩ dom(D), we
get D(n) = D(R(n)) and thus

D(n) = (D(R(n)) ∩R+ pkZp) ∩ dom(D) = (D(n) ∩R+ pkZp) ∩ dom(D)(3.31)

= (D(n) + pkZp) ∩ dom(D)(3.32)

proving (2) of the “In particular” part.
(2): Analogously to Eqn. (3.26) – (3.29) we get

D(n) = {m ∈ dom(D) | D[m][0, k − 2] = D[n][1, k − 1]}(3.33)

(w-block{k,k−1}(D)) = {m ∈ dom(D) | D[S(m)][0, k − 2] = D[R(n)][1, k − 1]}(3.34)

=
(
{m ∈ S | D[m][0, k−2] = D[R(n)][1, k−1]}+ pk−1Zp

)
∩ dom(D)(3.35)

= (D(R(n)) ∩ S + pk−1Zp) ∩ dom(D).(3.36)

For the “In particular” part we again observe that D(n) = D(R(n)), hence

D(n) = (D(R(n)) ∩ S + pk−1Zp) ∩ dom(D) = (D(n) ∩ S + pk−1Zp) ∩ dom(D)(3.37)

= (D(n) + pk−1Zp) ∩ dom(D).(3.38)

(3):

D(n) ∩R = {m ∈ R | D[m][0, k − 2] = D[n][1, k − 1]}(3.39)

= {m ∈ R | ∃ d ∈ p : D[m] = D[n][1, k − 1] · (d)} .(3.40)

Thus, blockk(D) and Lemma 3.5 imply that |D(n) ∩R| = |p| = p.
(4): Let l,m ∈ D(n). Then, D[l][0, k − 2] = D[m][0, k − 2] and hence l ≡ m mod pk−1 by
blockk(D), w-blockk−1(D), and Lemma 3.6 (which implies blockk−1(D)). The “In particular” part
then follows directly from (2). �

Using Theorem 3.4 and Theorem 3.7 we can completely characterize all 2-fibred functions which
generate the finite 2-digit tables given in Table 2. If F ∈ F2(domN0 , closed) then

D(F)J3K = D1 ⇔ ∀ n ∈ N0 : F(n) ∈Mn%8 + 8N0 where(3.41)

M0 := {0, 2} , M1 := {0, 2} , M2 := {0, 2} , M3 := {0, 2} ,
M4 := {1, 3, 7} , M5 := {1, 3, 7} , M6 := {1, 3, 7} , M7 := {0, 2}

D(F)J3K = D2 ⇔ ∀ n ∈ N0 : F(n) ∈Mn%8 + 8N0 where(3.42)

M0 := {0, 2} , M1 := {4, 6} , M2 := {4, 6} , M3 := {1, 5} ,
M4 := {1, 5} , M5 := {0, 2} , M6 := {3, 7} , M7 := {3, 7}

D(F)J3K = D3 ⇔ ∀ n ∈ N0 : F(n) ∈ mn%8 + 4N0 where(3.43)

m0 := 0, m1 := 0, m2 := 1, m3 := 1

m4 := 2, m5 := 2, m6 := 3, m7 := 3.

The rows of the F-digit table of a closed p-fibred function F are computed by iterative application
of F. Actually performing these iterations can be a very difficult task if F is complicated or highly
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expansive. The following corollary provides a useful method to actually compute p-digit tables of
p-fibred functions that at least have the weak block property.

Corollary 3.8. Let 2 ≤ p ∈ N, k ∈ N, F,G1,G2,H1,H2 ∈ Fp(closed) of equal domain, and
R,S, T ⊆ Zp CRSs modulo pk+1, pk, and pk respectively, such that

G1[r](n) = R(F[r](n))(3.44)

G2[r](n) = R(F[r](T (n)))(3.45)

H1[r](n) = S(F[r](n))(3.46)

H2[r](n) = S(F[r](T (n)))(3.47)

for all r ∈ p and all n ∈ (r + pZp) ∩ dom(F), and

R′ :=

{
r − r%p

p
| r ∈ R

}
, S′ :=

{
s− s%p

p
| s ∈ S

}
.(3.48)

Then,

(1) bndR′(G1), bndR′(G2), bndS′(H1), bndS′(H2)
(2) w-blockk(F)⇒

D(F)JkK = D(G1)JkK
D(F)JkK = D(G2)JkK, ∀ n ∈ dom(F) : G2(n) = G2(T (n))

w-block{k,k−1}(F)⇒
D(F)JkK = D(H1)JkK
D(F)JkK = D(H2)JkK, ∀ n ∈ dom(F) : H2(n) = H2(T (n))

blockk(F) ∧ w-blockk−1(F) and S′ CRS modulo pk−1 ⇒
∀ n ∈ dom(F) : H1(n) = H1(T (n)) = H2(n).

We will prove a slightly stronger version of the last statement of (2) in a later part of the paper
(Corollary 4.4 (3)).

As an example we consider p = 3, k = 5, R = 36, S = T = 35, and

F = (7x3 − 4x2 + x− 6, 3x7 − x+ 1, x2 + 6x+ 2)(3.49)

with dom(F) = Z3. Then, block(F) (as we will prove later, Corollary 4.11 (2)) and

H1(n) = (F[0](n) %35,F[1](n) %35,F[2](n) %35)(3.50)

H2(n) = (F[0](n%35)%35,F[1](n%35)%35,F[2](n%35)%35)(3.51)

for all n ∈ Z3. As claimed by the corollary, we get H1(n) = H1(n%35) = H2(n) ∈ 34 for all n ∈ Z3

and

D(F)[17][5] = D(H1)[17][5] = (2, 2, 1, 2, 0)(3.52)

but S(H1)[17][4] = 63 while S(F)[17][4] = 2.51041 . . . · 1052.

Proof of Corollary 3.8.
(1): Let n ∈ dom(F). Then,

G1(n) =
G1[n%p](n)−G1[n%p](n)%p

p
=
R(F[n%p](n))−R(F[n%p](n))%p

p
∈ R′.(3.53)

The remaining statements can be proven analogously.
(2): We will prove

G1(n),G2(n),H1(n),H2(n) ∈ D(F)JkK(n)(3.54)

for all n ∈ dom(F) from which it follows by Theorem 3.4 that

D(F)JkK = D(G1)JkK = D(G2)JkK = D(H1)JkK = D(H2)JkK.(3.55)
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Let n ∈ dom(F). Then,

G1(n) =
G1[n%p](n)−G1[n%p](n)%p

p
=
R(F[n%p](n))−R(F[n%p](n))%p

p
(3.56)

≡ F[n%p](n)− F[n%p](n)%p

p
= F(n) mod pk.(3.57)

In addition, F(n) ∈ D(F)JkK(n) and thus G1(n) ∈ D(F)JkK(n) by w-blockk(F) and by (1) of the
“In particular” part of Theorem 3.7 (1).

Analogously,

G2(n) =
G2[n%p](n)−G2[n%p](n)%p

p
=
R(F[n%p](T (n)))−R(F[n%p](T (n)))%p

p
(3.58)

≡ F[n%p](T (n))− F[n%p](T (n))%p

p
= F(T (n)) mod pk.(3.59)

In addition, F(T (n)) ∈ D(F)JkK(T (n)) = D(F)JkK(n) by (2) of the “In particular” part of Theo-
rem 3.7 (1) which again implies G2(n) ∈ D(F)JkK(n).

It can be shown in a completely analogous fashion that

H1(n) ≡ F(n) mod pk−1(3.60)

H2(n) ≡ F(T (n)) mod pk−1(3.61)

and hence H1(n),H2(n) ∈ D(F)JkK(n) by w-block{k,k−1}(F) and by the “In particular” part of
Theorem 3.7 (2) which completes the proof of Eqn. (3.55).

Clearly, G2(n) = G2(T (n)) and H1(T (n)) = H2(n) = H2(T (n)). We are thus left to show
that H1(n) = H1(T (n)) if blockk(F), w-blockk−1(F), and S′ is a CRS modulo pk−1. We observe
that H1(T (n)) ≡ F(T (n)) mod pk−1 and thus H1(T (n)) ∈ D(F)JkK(n). But then H1(T (n)) ≡
H1(n) mod pk−1 by Theorem 3.7 (4), and since both H1(T (n)) and H1(n) are in S′ by (1), they
must be equal. �

Now that we know exactly how to generate a finite p-digit table using a p-fibred function, we
are left with dealing with the infinite case which will finally establish the relation between p-adic
systems and infinite p-digit tables with block property and prove the claimed existence of a one-
to-one correspondence. We continue with two basic lemmas on infinite p-digit tables with block
property and one corollary on p-adic systems.

Lemma 3.9. Let 2 ≤ p ∈ N, D ∈ Dp(¬fin,block), and m,n ∈ dom(D). Then, m = n if and only
if D[m] = D[n].

Proof.

m = n⇔ ∀ k ∈ N : m ≡ n mod pk ⇔ ∀ k ∈ N : D[m][k] = D[n][k]⇔ D[m] = D[n].(3.62)

�

From the previous lemma can be derived the following useful corollary on p-adic systems.

Corollary 3.10. Let 2 ≤ p ∈ N, F ∈ Fp, and n ∈ Zp. Then, |I (S(F)[n])| = |I (D(F)[n])|
and |P (S(F)[n])| = |P (D(F)[n])|. In particular, per(S(F)[n]) ⇔ per(D(F)[n]), uper(S(F)[n]) ⇔
uper(D(F)[n]), and aper(S(F)[n])⇔ aper(D(F)[n]).

Proof. Let k, ` ∈ N0. Then,

S(F)[n][k + `,∞] = S(F)[n][k,∞]⇔ S(F)[Fk+`(n)] = S(F)[Fk(n)](3.63)

⇔ Fk+`(n) = Fk(n)(3.64)

(by Lemma 3.9)⇔ D(F)[Fk+`(n)] = D(F)[Fk(n)](3.65)

⇔ D(F)[n][k + `,∞] = D(F)[n][k,∞].(3.66)
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If k := |I (S(F)[n])| and ` := |P (S(F)[n])|, then S(F)[n][k + `,∞] = S(F)[n][k,∞] and hence
D(F)[n][k + `,∞] = D(F)[n][k,∞]. Thus,

|I (D(F)[n])| ≤ |I (S(F)[n])|(3.67)

|P (D(F)[n])| ≤ |P (S(F)[n])| .(3.68)

Analogously, if k := |I (D(F)[n])| and ` := |P (D(F)[n])|, then D(F)[n][k+ `,∞] = D(F)[n][k,∞]
and hence S(F)[n][k + `,∞] = S(F)[n][k,∞]. Thus,

|I (S(F)[n])| ≤ |I (D(F)[n])|(3.69)

|P (S(F)[n])| ≤ |P (D(F)[n])| .(3.70)

�

The following lemma is an analogue to the finite case treated in Lemma 3.5.

Lemma 3.11. Let 2 ≤ p ∈ N, D ∈ Dp, and D ∈ S(bndp,¬fin). Then, there is a unique n ∈ Zp
such that D[n] = D. In particular, |D(n)| = 1 for every n ∈ Zp.

Proof. For every i ∈ N let ri be the unique (by Lemma 3.5) element of pi such that D[ri][i] = D[i].
Furthermore, let n0 := r1 ∈ p, ni := (ri+1 − ri)/pi ∈ p for all i ∈ N, and n :=

∑∞
i=0 nip

i ∈ Zp.
Then, n ≡

∑k−1
i=0 nip

i = sk mod pk and hence D[n][k] = D[sk][k] = D[k] for all k ∈ N. The
uniqueness of n follows directly from Lemma 3.9. �

Using the above lemmas we are finally able to establish the claimed relation between p-adic systems
and infinite p-digit tables with block property.

Theorem 3.12. Let 2 ≤ p ∈ N and D ∈ Dp. Then, there is a unique FD ∈ Fp(canf) such that
D(FD) = D. In particular, FD is a p-adic system.

Proof. From Lemma 3.11 we get |D(n)| = 1 for every n ∈ Zp. Let FD ∈ Fp with

FD[r] : Zp → Zp(3.71)

n 7→

{
pD(n) if n ≡ r mod p (cf. Eqn. (2.3))

0 if n 6≡ r mod p

for all r ∈ p. Then, canf(FD) and D(FD) = D by Theorem 3.4. Furthermore, FD is uniquely
defined by this property by Lemma 3.1 and Theorem 3.4. �

Theorem 3.12 finally proves that there is a one-to-one correspondence between p-adic systems
(modulo ∼p) and infinite p-digit tables with block property given by

Fp/∼p ↔ Dp.(3.72)

F 7→ D(F)

FD ← [ D

In this sense we might as well define a p-adic system to be an infinite p-digit table with domain
Zp and block property and consider the corresponding p-fibred function to be its feature instead
of interpreting it the other way around. The decision to choose the dynamical interpretation over
the statical one in the definition (and thus fix a certain mindset) is somewhat arbitrary, but will
be explained to some extent in the upcoming section. Nevertheless, we may choose to go back and
forth between both interpretations if certain things are easier to see or prove in one setting or the
other.

Considering the above theorem, a natural question to ask is whether all p-digit tables that
only have the weak block property but not the the block property, can also be realized as the
p-digit table of a closed p-fibred function. That this is not the case, is proven by the following
counter-example.

Example 3.13. Let D := ((n ≡ 0 mod 2 ? (0)∞ : (1, 0) · (1)∞))n∈Z2
. Then, w-block(D) but, since

D(1) = ∅, Theorem 3.4 implies that there is no closed p-fibred function F such that D(F) = D.
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As a first example of how the relation between p-adic systems and p-digit tables can be exploited,
we show that any infinite p-digit table with block property whose domain is dense in Zp, can be
extended to Zp in a unique way such that the block property still holds. This implies an equal
statement for p-adic systems: any p-fibred function with block property whose domain is dense in
Zp, has a unique extension to a p-adic system (i.e. its domain can be extended to Zp such that
the block property is preserved).

Lemma 3.14. Let 2 ≤ p ∈ N and D,E ∈ Dp(w-block) of equal domain such that D|A = E|A for
some set A ⊆ dom(D) that is dense in Zp. Then, D = E.

Proof. Assume to the contrary that D 6= E. Then there is an n ∈ dom(D) and a k ∈ N0 such
that D[n][k] 6= E[n][k]. Since A is dense in Zp, there is an N ∈ A with N ≡ n mod pk+1. Then,
w-block(D) and w-block(E) implies

D[n][k] = D[N ][k] = E[N ][k] = E[n][k].(3.73)

In particular, D[n][k] = E[n][k], which is a contradiction. �

Lemma 3.15. Let 2 ≤ p ∈ N, D ∈ Dp(w-block) such that dom(D) is dense in Zp, and let
E ∈ Dp(domZp) be defined in the following way: for n ∈ Zp and k ∈ N0 let E[n][k] := D[N ][k] where

N ∈ dom(D) such that N ≡ n mod pk+1 (well-defined due to w-block(D)). Then, w-block(E) and
E|dom(D) = D and E is uniquely defined by this property. Furthermore, if block(D), then block(E).

Proof. Uniqueness follows directly from Lemma 3.14.
Let n ∈ Zp, k ∈ N, and N ∈ dom(D) such that N ≡ n mod pk. Then N ≡ n mod pi+1 and

hence E[n][i] = D[N ][i] for all i ∈ k which implies E[n][k] = D[N ][k]. If n ∈ dom(D), this further
implies that E[n][k] = D[N ][k] = D[n][k] and we conclude E|dom(D) = D.

Now let m,n ∈ Zp, k ∈ N with m ≡ n mod pk, and M ∈ dom(D) such that M ≡ m mod pk.
Then, M ≡ n mod pk and E[m][k] = D[M ][k] = E[n][k]. Therefore, w-block(E).

Finally, assume that block(D) and let m,n ∈ Zp, k ∈ N with E[m][k] = E[n][k], and M,N ∈
dom(D) such that M ≡ m mod pk and N ≡ n mod pk. Then,

D[M ][k] = E[m][k] = E[n][k] = D[N ][k],(3.74)

and since block(D), this implies that m ≡M ≡ N ≡ n mod pk. Therefore, block(E). �

Corollary 3.16. Let F ∈ Fp(w-block) with dom(F) dense in Zp, G ∈ Fp(domZp ,w-block) such
that G|dom(F) = F, and E ∈ Dp(domZp ,w-block) such that E|dom(F) = D(F) (cf. Lemma 3.15).
Then, E = D(G).

Proof. Follows directly from Lemma 3.15. �

By Lemma 3.14 and Lemma 3.15 a p-digit table with weak block property is uniquely defined
by its restriction to any dense subset of its domain. Because of the nature of the weak block
property, we can even go one step further and drop more redundant information to gain a minimal
representation of a given p-digit table with weak block property that still allows to recover the full
table. Looking at the examples given in Table 1, one can see that due to the repetition of blocks
the full table can be reconstructed from the sequence gained by concatenating the rightmost rows
in each block. Formally, if 2 ≤ p ∈ N and k ∈ N ∪ {∞}, then there is a bijection between the set
of all p-digit tables of length k that have domain Zp and the weak block property and the set of
all p-bounded sequences of length (pk+1 − 1)/(p− 1)− 1 with prefix (0, . . . , p− 1) given by

Dp(domZp , lenk,w-block)↔ S(bndp, len(pk+1−1)/(p−1)−1,pre(0,...,p−1))(3.75)

D 7→
k−1∏
`=0

p`+1−1∏
n=0

(D[n][`])((
D

[
p`+1 − 1

p− 1
− 1 + n%p`+1

])
`∈k

)
n∈Zp

← [ D
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where the product denotes a product of one-element sequences (i.e. their concatenation). In this
interpretation the p-digit tables with weak block property correspond exactly to the p-bounded
sequences of a certain length (and a specific prefix necessary for technical reasons). The question
arises how the stronger block property of p-digit tables (which makes them p-adic systems after
all) translates to the corresponding sequences. In order to answer this question, we define the
following two predicates on S (2 ≤ p ∈ N, k ∈ N ∪ {∞}, S ∈ S):

w-blockp,k(S)⇔ bndp(S) S has the weak (p, k)-block property(3.76)

len(pk+1−1)/(p−1)−1(S)

pre(0,...,p−1)(S)

blockp,k(S) ⇔ w-blockp,k(S) S has the (p, k)-block property(3.77)

∀ ` ∈ k : ∀ n ∈ (p`+1 − 1)/(p− 1)− 1 + p` :
{
S[n+ ip`] | i ∈ p

}
= p

A quick check of the definitions shows that a sequence with the (p, k)-block property corresponds
to (by the above mapping) a p-digit table that has the block property and vice versa. Therefore,
the restriction of the above mapping also defines a bijection between Dp(domZp , lenk,block) and

S(blockp,k). This is true in particular for k =∞, in which case we get a bijection between Dp and
S(blockp,∞).

As an example we consider the well-known Thue-Morse sequence

T := (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, . . .)(3.78)

which, according to its Wikipedia article, is “obtained by starting with 0 and successively appending
the Boolean complement of the sequence obtained thus far”. By slight modification of its beginning
it is actually possible to make it satisfy the (2,∞)-block property and thus define a 2-adic system.
For that we set

S := (0, 1) · T [4,∞](3.79)

= (0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, . . .).(3.80)

The corresponding 2-adic system which generates this sequence can be found easily using the
results of this subsection and is given by

F := (x+ 6− 2(x%8), x+ 3− 2(x%8) + 2(x%4)).(3.81)

It can be readily verified that S is indeed equal to the sequence obtained from D = D(F) when
using the bijection defined in Eqn. (3.75). Despite best efforts, the author was unable to find any
reference to this method for defining the Thue-Morse sequence in the literature. Furthermore, it
appears worth noting that the corresponding sequence of the even simpler 2-adic system

G := (x, x+ 3− 2(x%4))(3.82)

coincides with 1− T [2,∞], the truncated Boolean complement of the Thue-Morse sequence.

Permutations of p-adic integers that respect congruence modulo powers of p. The last
interpretation of p-adic systems we give in this section is that of permutations of Zp. Clearly, every
p-adic system F defines a bijection between Zp and S(bndp,¬fin) by its F-digit table. We define

ψF : Zp → S(bndp,¬fin).(3.83)

n 7→ D(F)[n]

If one interprets an infinite sequence with entries in p as the usual base p expansion of a p-adic
integer, then ψF also defines a permutation of Zp. This is a special case of the following idea: for
two p-adic systems F and G let

πF,G := ψG
−1 ◦ ψF : Zp → Zp.(3.84)

Then πF,G clearly defines a permutation of Zp. Interpreting the infinite sequences that ψF yields as
the usual base p expansions, corresponds to the choice G = Fp = (x)p = (x, . . . , x) (cf. Eqn. (2.33)).
As an example consider F := FC and G := F2. Then we get D(F)[1] = (1, 0)∞ = D(G)[−1/3]
and hence πF,G(1) = −1/3.
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Several properties of permutations of the form πF,G are summarized in the following lemma.

Lemma 3.17. Let 2 ≤ p ∈ N, F and G two p-adic systems, π := πF,G, and k ∈ N0. Then,

(1) ∀m,n ∈ Zp : m ≡ n mod pk ⇔ π(m) ≡ π(n) mod pk

In particular: π is measure preserving (and thus continuous) and it induces a permutation πk
of Zp/pkZp by [n] 7→ [π(n)]

(2) ∀m,n ∈ Zp with n ≡ π(m) mod pk : ∀M,N ∈ Zp with N ≡ π(M) mod pk+1 :
m ≡M mod pk ⇒ n ≡ N mod pk,

Note: n ≡ π(m) mod pk ⇔ n ∈ πk([m]) and N ≡ π(M) mod pk+1 ⇔ N ∈ πk+1([M ])
(3) π−1 = πG,F
(4) ∀ n ∈ Zp : ψF(F(n)) = ψF(n)[1,∞]

In particular: ∀D ∈ S(bndp,¬fin) : ψF(F(ψF
−1(D))) = D[1,∞]

(5) ∀ n ∈ Zp : π(F(n)) = G(π(n)) and F(π−1(n)) = π−1(G(n)).

Proof.
(1):

m ≡ n mod pk ⇔ ψF(m)[k] = ψF(n)[k] (block(F))(3.85)

⇔ ψG(ψG
−1(ψF(m)))[k] = ψG(ψG

−1(ψF(n)))[k](3.86)

(block(G)) ⇔ ψG
−1(ψF(m)) ≡ ψG

−1(ψF(n)) mod pk(3.87)

⇔ π(m) ≡ π(n) mod pk.(3.88)

(2): From m ≡M mod pk and (1) it follows that n ≡ π(m) ≡ π(M) ≡ N mod pk.
(3): Follows directly from the definitions.
(4): For every n ∈ Zp we have

ψF(F(n)) = D(F)[F(n)] = D(F)[n][1,∞] = ψF(n)[1,∞].(3.89)

For the “In particular” part set n := ψF
−1(D). Then,

ψF(F(ψF
−1(D))) = ψF(ψF

−1(D))[1,∞] = D[1,∞].(3.90)

(5): From (4) it follows that

ψG(π(F(n))) = ψG(ψG
−1(ψF(F(n)))) = ψF(n)[1,∞] = ψG(G(ψG

−1(ψF(n))))(3.91)

= ψG(G(π(n)))(3.92)

and hence π(F(n)) = G(π(n)). To see F(π−1(n)) = π−1(G(n)) just substitute n with π−1(n). �

In the previous paragraph we observed that p-digit tables coming from p-adic systems have a
specific property (the block property). We then tried to answer the question if every p-digit table
with block property can be recognized as the F-digit table of a p-adic system F and we found
that this is indeed the case. We will now try to pursue the same strategy for permutations of
p-adic integers, where the special property which we demand to hold is given by (1) of the previous
lemma. Indeed, we call a permutation π : Zp → Zp of the p-adic integers a p-adic permutation if
the following two properties hold:

∀ n ∈ Zp : π(n) ≡ n mod p(3.93)

∀ k ∈ N : ∀m,n ∈ Zp : m ≡ n mod pk ⇔ π(m) ≡ π(n) mod pk.(3.94)

The set of p-adic permutations shall be denoted by Pp. For every p-adic permutation π and every
k ∈ N0 we define (cf. (1) of the previous lemma)

πk : Zp/pkZp → Zp/pkZp.(3.95)

[n] 7→ [π(n)]

Clearly, every permutation of the form π = πF,G where F and G are p-adic systems is a p-
adic permutation by the previous lemma (cf. also Eqn. (2.18)). The question is if every p-adic
permutation can be expressed in this way and the answer is given in the following theorem.
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Theorem 3.18. Let 2 ≤ p ∈ N, π a p-adic permutation, and G a p-adic system. Then there is a
p-adic system F such that π = πF,G. F is uniquely defined up to ∼p.

Proof. Let

D := (ψG(π(n)))n∈Zp .(3.96)

We claim that D is a p-digit table. Then, Theorem 3.12 implies that there is a unique (up to ∼p)
p-adic system F such that D = D(F) and we thus get

ψF(n) = D[n] = ψG(π(n))(3.97)

for all n ∈ Zp, i.e. π = πF,G.
By Eqn. (3.93) and block(G) we get

D[n][0] = D(G)[π(n)][0] = D(G)[n][0] = n%p(3.98)

for all n ∈ Zp. We are thus left to show block(D).
Let k ∈ N and m,n ∈ Zp. Then,

m ≡ n mod pk ⇔ π(m) ≡ π(n) mod pk(3.99)

(block(G)) ⇔ ψG(π(m))[k] = D(G)[π(m)][k] = D(G)[π(n)][k] = ψG(π(n))[k](3.100)

⇔ D[m][k] = D[n][k](3.101)

which completes the proof. �

Just as with p-digit tables with block property we established a one-to-one correspondence
between p-adic permutations and p-adic systems. If G is a fixed p-adic system then

ΠG : Fp/∼p → Pp(3.102)

F 7→ πF,G

defines a bijection.
As with p-digit tables this relation can also be used to see and prove certain properties of p-adic

systems more easily as the following theorem shows.

Theorem 3.19. Let 2 ≤ p ∈ N. Then the set of all p-adic permutations forms a subgroup of the
set of all permutations of Zp with respect to composition.

Proof. Let π, π1 and π2 be p-adic permutations. Then, it follows directly from the definition that
both π2 ◦ π1 and π−1 are also p-adic permutations. �

We can now use ΠG to transport this group structure to the set Fp of p-adic systems. We define

F1 ◦G F2 := ΠG
−1(ΠG(F1) ◦ΠG(F2))(3.103)

for every pair F1,F2 of p-adic systems which makes
(
Fp, ◦G

)
a group with neutral element

ΠG
−1(πG,G) = G and inverse element ΠG

−1(πG,F) of F ∈ Fp. Basic properties of these groups are
summarized in the following lemma.

Lemma 3.20. Let 2 ≤ p ∈ N, F, F1, F2, G, G1, G2 p-adic systems, π a p-adic permutation, and
n ∈ Zp. Then,

(1) ΠG is an isomorphism and
(
Fp/∼p , ◦G

)
and

(
Pp, ◦

)
are isomorphic

In particular: ΠG2

−1 ◦ΠG1
is an isomorphism and(

Fp/∼p , ◦G1

)
and

(
Fp/∼p , ◦G2

)
are isomorphic

(2) ΠG(F)(n) = πF,G(n) = ψG
−1(ψF(n))

(3) ΠG
−1(π)(n) = π−1(G(π(n)))

(4) F2 ◦G F1(n) = πG,F1(F2(πF1,G(n))).
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Proof.
(1) and (2): Follow directly from the definitions.
(3): Let F := ΠG

−1(π). Then, π = πF,G and

π−1(G(π(n))) = πG,F(G(πF,G(n))) (Lemma 3.17 (3))(3.104)

= ψF
−1(ψG(G(ψG

−1(ψF(n)))))(3.105)

(Lemma 3.17 (4)) = ψF
−1(ψF(n)[1,∞])(3.106)

= ψF
−1(D(F)[n][1,∞]) = ψF

−1(D(F)[F(n)]) = F(n) = ΠG
−1(π)(n).(3.107)

(4):

F2 ◦G F1(n) = ΠG
−1(ΠG(F2) ◦ΠG(F1))(n)(3.108)

(3) = (ΠG(F2) ◦ΠG(F1))−1(G(ΠG(F2) ◦ΠG(F1)(n)))(3.109)

= ΠG(F1)
−1

(ΠG(F2)
−1

(G(ΠG(F2)(ΠG(F1)(n)))))(3.110)

(Lemma 3.17 (3)) = πG,F1
(πG,F2

(G(πF2,G(πF1,G(n)))))(3.111)

(Lemma 3.17 (5)) = πG,F1
(πG,F2

(πF2,G(F2(πF1,G(n)))))(3.112)

(Lemma 3.17 (3)) = πG,F1(F2(πF1,G(n))).(3.113)

�

In order to see how ◦G operates on Fp, consider the following example.

Example 3.21. Let G := (x, x− 1), F1 := (x, 3x+ 1), F2 := FC = (5x, x+ 1), and n := 5. Then,

ψF1
(5) = (1, 0, 0) · (0, 1)∞ = ψG(−13/3), hence πF1,G(5) = −13/3,(3.114)

F2(−13/3) = −5/3,(3.115)

ψG(−5/3) = (1, 0) · (0, 1)∞ = ψF1(7/3), hence πG,F1(−5/3) = 7/3.(3.116)

Thus, Lemma 3.20 (4) implies F2 ◦G F1(n) = 7/3.

We close this paragraph with an analysis of the cycle structure of the induced permutations πk
of a p-adic permutation π which leads to the definition of the tree of cycles of π. In Section 8 we
will use this tree of cycles to prove that two classes of p-adic systems (polynomial p-adic systems
and p-permutation polynomials) are indeed distinct. The method used there is quite general and
should work for other classes that may be found in the future as well.

We define the cyclic shift function on sequences by

σ : S× R→ S.(3.117)

(S, s) 7→

{
S[bsc% |S| , |S| − 1] · S[0, bsc% |S| − 1] if fin(S)

S[bsc ,∞] if ¬fin(S)

For any permutation π of a finite set we denote by Σ(π) ⊆ S(fin)/∼σ the set of cycles of π, where

S ∼σ T ⇔ |S| = |T | ∧ ∃ s ∈ Z : σ(S, s) = T(3.118)

for all S, T ∈ S(fin), e.g. (0, 1, 2, 3) ∼σ (3, 0, 1, 2), since σ((0, 1, 2, 3), 3) = (3, 0, 1, 2). We set
|[S]∼σ | := |S| for all [S]∼σ ∈ S(fin)/∼σ .

The following theorem is the basis of the definition of the tree of cycles of a p-adic permutation
(and thus of p-adic systems).

Theorem 3.22. Let 2 ≤ p ∈ N, π ∈ Pp, k ∈ N0, and S = [([a0], . . . , [ar−1])]∼σ ∈ Σ(πk). Then

there are m ∈ J1, pK, s0, . . . , sm−1 ∈ N with sn/r ∈ J1, pK for all n ∈ m and
∑m−1
n=0 sn/r = p,

and pairwise distinct [([b0,0], . . . , [b0,s0−1])]∼σ , . . . , [([bm−1,0], . . . , [bm−1,sm−1−1])]∼σ ∈ Σ(πk+1) (the
children of S) such that

∀ n ∈ m : ∀ i ∈ r : ∀ j ∈ sn/r : ai ≡ bn,jr+i mod pk.(3.119)

In particular, Σ(πk+1) is the disjoint union of the sets of children of all cycles in Σ(πk).
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Proof. Let b0,0 ∈
{
a0 + ipk | i ∈ p

}
and [([b0,0], . . . , [b0,s0−1])]∼σ be the cycle of πk+1 that contains

[b0,0]. Then Lemma 3.17 (2) implies that ai%r ≡ bi%s0 mod pk for all i ∈ Z and hence r | s0. If s0 =
rp we are done. Otherwise we choose b1,0 ∈

{
a0 + ipk | i ∈ p

}
such that [b1,0] does not occur among

the entries of [([b0,0], . . . , [b0,s0−1])]∼σ and we consider the cycle [([b1,0], . . . , [b1,s1−1])]∼σ of πk+1

that contains [b1,0] which will again satisfy ai%r ≡ bi%s1 mod pk for all i ∈ Z and r | s1. After m ≤
p steps we have found the cycles [([b0,0], . . . , [b0,s0−1])]∼σ , . . . , [([bm−1,0], . . . , [bm−1,sm−1−1])]∼σ ) of
πk+1 that have all the claimed properties. �

Corollary 3.23. Let 2 ≤ p ∈ N, π ∈ Pp, k ∈ N0, and σ ∈ Σ(πk). Then the prime factors of |σ|
are contained in p.

Proof. Follows directly from Theorem 3.22 and from the fact that π0 : {Zp} → {Zp}, [0] 7→ [0] and
thus Σ(π0) = {[([0])]∼σ}. �

As indicated above, Theorem 3.22 implies the existence of a tree of cycles: for any 2 ≤ p ∈ N
and π ∈ Pp let

V(π) := {(k, σ) | k ∈ N0 ∧ σ ∈ Σ(πk)}(3.120)

E(π) :=
{

((k, [([a0], . . . , [ar])]∼σ ), (`, [([b0], . . . , [bs])]∼σ )) ∈ V(π)2 |(3.121)

k + 1 = `

∃ i ∈ Z : ∀ j ∈ Z : aj%r ≡ b(i+j)%s mod pk
}

G(π) := (V(π), E(π))(3.122)

and

c(π) : E(π)→ J1, pK.(3.123)

((k, σ), (k + 1, τ)) 7→ |τ |
|σ|

Corollary 3.24. Let 2 ≤ p ∈ N, π ∈ Pp, and k ∈ N0. Then G(π) is a directed, infinite, rooted tree
with root (0, [([0])]∼σ ). The out-degrees of all vertices are contained in J1, pK and the out-degree of
the root is p. The cycle decomposition of πk is given by the k-th layer of G(π) (vertices of distance
k from the root). Furthermore, c(π) defines an edge labeling of G(π). The labels of all outgoing
edges of a given vertex sum up to p and all edges going out of the root are labeled 1. For every
vertex of G(π) the length of the represented cycle coincides with the product of all edge labels along
the unique path connecting the vertex with the root.

Proof. Follows directly from Theorem 3.22 and from the fact that

Σ(π1) = {[([0])]∼σ , . . . , [([p− 1])]∼σ}(3.124)

by Eqn. (3.93). �

Figure 1 below gives two examples of trees of cycles of p-adic permutations. For comparison we give
the lists of all cycles of π0, . . . , π5 for π := π(x,3x+1),(5x+18,x−7), i.e. the first of the two examples
given in Figure 1 (to improve readability we omit the square brackets indicating equivalence classes,
i.e. we write (0, 2, 4, 6) for [([0], [2], [4], [6])]∼σ ):

Σ(π0) : (0)(3.125)

Σ(π1) : (0), (1)(3.126)

Σ(π2) : (0, 2), (1, 3)(3.127)

Σ(π3) : (0, 2, 4, 6), (1, 7), (5, 3)(3.128)

Σ(π4) : (0, 10, 4, 14), (8, 2, 12, 6), (1, 15, 9, 7), (5, 11), (13, 3)(3.129)

Σ(π5) : (0, 26, 4, 14, 16, 10, 20, 30), (8, 2, 28, 22, 24, 18, 12, 6), (1, 31, 25, 23), (17, 15, 9, 7),(3.130)

(5, 11), (21, 27), (13, 3, 29, 19).
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1 1

2 2

2 1 1

1 1 2 1 1

2 2 1 1 2 1 1

0

0 1

0 1

0 1 5

0 8 1 13 5

0 1 178 13 5 21

1 1 1

2 1 3 2 1

2 1 3 3 2 1 3

3 1 2 1 1 1 1 2 33 3

3 2 1 1 1 1 2 1 3 1 23 3 1 1 12 1 1 1 1

0

0 1 2

0 3 1 2 8

0 9 1 2 203 8

0 1 28 55 2 293 20 89 36

0 1 82 23 109 28 190 20 8 170 899 90 110 29136 55198 36 117

Figure 1. Layers 0 to 5 of the trees of cycles of the p-adic permutations
π(x,3x+1),(5x+18,x−7) (left) and π(−5x−3,5x+1,−x+5),(−4x+3,−x+1,−2x+4) (right). The
vertex labels are class representatives of possible starting points of the respective
cycles.

Summary. In this section we have discussed several interpretations of p-adic systems. The rela-
tions we have established are summarized below.

Fp/∼p ↔ Zp, D : Fp/∼p ↔ Dp, ΠG(F) : Fp/∼p ↔ Pp.(3.131)

F 7→ (F : Zp → Zp) F 7→ D(F) F 7→ ψG
−1 ◦ ψF

(pf, . . . , pf)←[ f FD ← [ D π−1 ◦G ◦ π ← [ π

4. A useful characterization and many examples of p-adic systems

In the previous section we have discussed several interpretations of p-adic systems from which
we ultimately chose “p-fibred functions with block property” to serve as their definition. As with
any new mathematical object the obvious first question to ask is: do they exist? In the case of
p-adic systems the question seems obsolete, as we already have given examples (FC and F2 from
the introduction) and have also proven that there is a one-one-one correspondence between p-fibred
systems and, say, p-digit tables with block property, the latter of which clearly exist in abundance.
The real question to ask in this case is, thus, a slightly different one: do many of them occur
“naturally” in their p-fibred function form (which we favored over the other forms in the definition
after all) or are most of them clumsy and “artificial” when interpreted as p-fibred functions? The
answer to this question (which is: yes, many occur naturally) will be given by the following very
useful characterization. But before we need to define the following predicates on the set (Zp)A of
all mappings from A to Zp, where 2 ≤ p ∈ N and A ⊆ Zp (f ∈ (Zp)A, r ∈ p, K ⊆ N0):

w-suitp,r,K(f)⇔ ∀ k ∈ K : ∀m,n ∈ (r + pZp) ∩A : f is weakly (p, r)-suitable at K(4.1)

m ≡ n mod pk ⇒ (f − f%p)(m) ≡ (f − f%p)(n) mod pk

w-suitp,r(f) ⇔ w-suitp,r,N0
(f) f is weakly (p, r)-suitable(4.2)

suitp,r,K(f) ⇔ ∀ k ∈ K : ∀m,n ∈ (r + pZp) ∩A : f is (p, r)-suitable at K(4.3)

m ≡ n mod pk ⇔ (f − f%p)(m) ≡ (f − f%p)(n) mod pk

suitp,r(f) ⇔ suitp,r,N0(f) f is (p, r)-suitable(4.4)

Note that any function f : A → Zp satisfying f((r + pZp) ∩ A) ⊆ pZp (cf. the definition of
p-fibred functions being in weak canonical form, Eqn. (2.27)) is weakly (p, r)-suitable if and only
if f |(r+pZp)∩A satisfies the 1-Lipschitz condition, and (p, r)-suitable if and only if f |(r+pZp)∩A is
measure preserving (can be extended to a measure preserving function on Zp, to be exact) [59]. In
this case one clearly gets f(n)%p = 0 for all n ∈ (r+pZp)∩A and thus the condition (f−f%p)(m) ≡
(f − f%p)(n) mod pk simplifies to f(m) ≡ f(n) mod pk.
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The following theorem summarizes how weakly (p, r)-suitable and (p, r)-suitable functions can
be used to characterize closed p-fibred functions with weak block property and block property
respectively.

Theorem 4.1. Let 2 ≤ p ∈ N, F ∈ Fp(closed), and k ∈ N. Then,

(1) ∀ r ∈ p : w-suitp,r,k(F[r])⇒ w-blockk(F)

In particular: ∀ r ∈ p : w-suitp,r(F[r])⇒ w-block(F)
(2) ∀ r ∈ p : suitp,r,k(F[r])⇔ blockk(F)

In particular: ∀ r ∈ p : suitp,r(F[r])⇔ block(F).

Proof. Let ` ∈ k, r ∈ p, and m,n ∈ (r + pZp) ∩ dom(F). Then,

F(m) ≡ F(n) mod p`−1 ⇔ F[r](m)− F[r](m)%p

p
≡ F[r](n)− F[r](n)%p

p
mod p`−1(4.5)

⇔ F[r](m)− F[r](m)%p ≡ F[r](n)− F[r](n)%p mod p`(4.6)

and the statements follow from Lemma 3.2. �

Despite the fact that the proof of this theorem is rather simple, it is quite remarkable. It states that
the block property of a p-fibred function F does not depend on the relation between the functions
F[0], . . . ,F[p − 1], but is only a question of whether each F[r] is “suitable” to be the r-th of the
p entries of F. The p functions that define F can be chosen completely independently from one
another.

The weak block property revisited. A similar characterization is given for the weak block
property, but in contrast to the characterization of the block property in (2), the condition in
(1) is only sufficient but not necessary. A natural question to ask is whether the weak block
property also permits a necessary and sufficient characterization that only considers the functions
F[0], . . . ,F[p − 1] independently from one another. The following example shows that this is not
the case.

Example 4.2. Let f, g, h : Z2 → Z2 with f(n) = (n = 8 ? 6 : 2), g(n) = (n = 3 ? − 2 : (n ≡
3 mod 4 ? 6 : 0)), and h(n) = 0 for all n ∈ Z2. Furthermore, let F := (f, h), G := (h, g), and
H := (f, g). Then D(H)[0][3] = (0, 1, 0) 6= (0, 1, 1) = D(H)[23][3] which implies that H does not
have the weak block property (at 3). At the same time we get D(F) = ((n ≡ 0 mod 2 ? (0, 1)∞ :
(1, 0)∞))n∈Z2

and D(G) = ((n ≡ 0 mod 2 ? (0)∞ : (n ≡ 1 mod 4 ? (1) · (0)∞ : (1)∞))n∈Z2

which implies that both F and G have the weak block property. Note that f(0) = 2 6≡ 2 + 22 =
f(0 + 23) mod 23 and g(3) = −2 6≡ −2 + 23 = g(3 + 24) mod 24 which means that neither f nor
g are weakly (2, 0)-, respectively weakly (2, 1)-suitable.

f and g of the previous example can both be part of 2-fibred functions (F and G respectively) that
have the weak block property, but the 2-fibred function H, which contains both f and g, does not
have the weak block property. Thus, there cannot be a necessary and sufficient characterization of
the weak block property which considers the entries of a p-fibred function independently.

A natural follow-up question is whether every p-digit table with weak block property that is
the p-digit table of a p-fibred function can at least be realized as the p-digit table of a p-fibred
function whose entries are weakly (p, r)-suitable functions. This is true for the 2-digit tables D(F)
and D(G) of the previous example: if f0, f1, g0, g1 : Z2 → Z2 with f0(n) = 2, f1(n) = 0, g0(n) = 0,
and g1(n) = (n ≡ 1 mod 4 ? 0 : 6) for all n ∈ Z2, then D(F) = D((f0, f1)) and D(G) = D((g0, g1)),
and also w-suit2,0(f0), w-suit2,1(f1), w-suit2,0(g0), and w-suit2,1(g1). However, in general even this
does not hold as the following example shows.

Example 4.3. Let f0, f1 : Z2 → Z2 with f0(n) = (n%16 = 8 ? 6 : (n%4 = 0 ? 2 : 4)) and
f1(n) = (n%4 = 1 ? 4 : 0) for all n ∈ Z2. Furthermore, let F := (f0, f1), and D := D(F).
Then D = ((n ≡ 8 mod 16 ? (0, 1, 0, 1) : (n ≡ 0 mod 4 ? (0, 1) : (n ≡ 1 mod 4 ? (1) :
(n ≡ 2 mod 4 ? () : (1, 0, 1))))) · (0)∞)n∈Z2

and hence D has the weak block property, but
since D(0) = 1+4Z2 and D(8) = 3+4Z2, Theorem 3.4 implies that there cannot exist any 2-fibred
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function G = (g0, g1) with g0 : Z2 → Z2 weakly (2, 0)-suitable and g1 : Z2 → Z2 weakly (2, 1)-
suitable such that D = D(G), because in this case g0(0) ∈ {2, 3} + 8Z2 and g0(8) ∈ {6, 7} + 8Z2

and hence (g0 − g0%2)(0) 6≡ (g0 − g0%2)(0 + 23) mod 23.

Example 3.13, Example 4.2, and Example 4.3 indicate that there are actually three levels of the
weak block property of p-digit tables of different generality. The weakest form is given by the weak
block property itself, the stronger version (as proven by Example 3.13) requires the p-digit table
to come from some p-fibred function, while the even stronger version (as proven by Example 4.3)
requires the entries of this p-fibred function to be weakly (p, r)-suitable.
We thus define the following predicates on Dp (D ∈ Dp, K ⊆ N0):

w-block-FK(D)⇔ ∃ F ∈ Fp(w-blockK) : D has the weak block property F at K(4.7)

D = D(F)

w-block-F(D) ⇔ w-block-FN0(D) D has the weak block property F(4.8)

w-block-SK(D) ⇔ ∃ F ∈ Fp(w-blockK) : D has the weak block property S at K(4.9)

D = D(F) ∧ ∀ r ∈ p : w-suitp,r,K(F[r])

w-block-S(D) ⇔ w-block-SN0
(D) D has the weak block property S(4.10)

Clearly,

blockK(D)⇒ w-block-SK(D)⇒ w-block-FK(D)⇒ w-blockK(D)(4.11)

block(D) ⇒ w-block-S(D) ⇒ w-block-F(D) ⇒ w-block(D)(4.12)

for all D ∈ Dp and all K ⊆ N0 by definition but, as discussed above, neither of the converses of
the four implications is true in general.

The predicates w-block-FK and w-block-F carry over to Fp(closed) by D(F) but we define the
following alternative predicates on Fp(closed) (F ∈ Fp(closed), k ⊆ N0):

w-block-SK(F)⇔ ∀ r ∈ p : w-suitp,r,K(F[r]) F has the weak block property S at K(4.13)

w-block-S(F) ⇔ w-block-SN0
(F) F has the weak block property S(4.14)

It follows from the definitions and from Theorem 4.1 (2) that

blockK(F)⇒ w-block-SK(F)⇒ w-block-SK(D(F))⇒ w-block-FK(F)⇔ w-blockK(F)(4.15)

block(F) ⇒ w-block-S(F) ⇒ w-block-S(D(F)) ⇒ w-block-F(F) ⇔ w-block(F)(4.16)

for all F ∈ Fp(closed) and all K ⊆ N0 while, again, neither of the converses of the six implications
is true in general.

In addition to being of general interest, this “refinement” of the weak block property has a first
application as well in proving a stronger version of the last statement of Corollary 3.8 (2).

Corollary 4.4. Under the assumptions of Corollary 3.8 we have

(3) w-block-Sk(F) ∧ w-blockk−1(F) and S′ CRS modulo pk−1 ⇒
∀ n ∈ dom(F) : H1(n) = H1(T (n)) = H2(n).

Proof. It follows from the assumptions that H1[r](n) = S(F[r](n)) ≡ F[r](n) mod pk for all r ∈ p
and all n ∈ (r + pZp) ∩ dom(F). Thus, w-block-Sk(F) implies that also w-block-Sk(H1), i.e.
w-suitp,r,k(H1[r]) for all r ∈ p.

Now let n ∈ dom(F). Clearly, H1(T (n)) = H2(n). In addition, T (n) ≡ n mod pk and hence

pH1(T (n)) = H1[T (n)%p](T (n))−H1[T (n)%p](T (n))%p(4.17)

= H1[n%p](T (n))−H1[n%p](T (n))%p(4.18)

(w-suitp,n%p,k(H1[n%p])) ≡ H1[n%p](n)−H1[n%p](n)%p(4.19)

= pH1(n) mod pk.(4.20)

We thus get H1(T (n)) ≡ H1(n) mod pk−1 and since both H1(T (n)) and H1(n) are in S′ by
Corollary 3.8 (1), they must be equal. �
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Properties of suitable functions. Since (p, r)-suitable functions are the building blocks of p-adic
systems, we summarize some basic facts on them below.

Lemma 4.5. Let 2 ≤ p ∈ N, A ⊆ Zp, r ∈ p, and f : A→ Zp (p, r)-suitable. Then,

(1) f |(r+pZp)∩A is injective
(2) r + pZp ⊆ A ∧ f(r + pZp) ⊆ pZp ⇒ f |r+pZp(r + pZp) = pZp

In particular: g : r + pZp → Zp, n 7→ f(n)/p is bijective.

Proof.
(1): Assume to the contrary that f |(r+pZp)∩A is not injective and let m,n ∈ (r + pZp) ∩ A
with m 6= n such that f(m) = f(n). Then there is a k ∈ N such that m 6≡ n mod pk, but

(f − f%p)(m) ≡ (f − f%p)(n) mod pk which is a contradiction.
(2): Let g : Zp → Zp be an arbitrary extension of f , idZp the identity function on Zp, and

F := (idZp)r · (g) · (idZp)p−r−1. Then F ∈ Fp by Theorem 4.1 (2) and hence Lemma 3.11 implies
that for every n ∈ Zp there is a unique m ∈ Zp such that

D(F)[m] = (r) ·D(F)[n].(4.21)

It follows that

D(F)[F(m)] = D(F)[n](4.22)

and hence F(m) = n by Lemma 3.9. Furthermore, m ∈ r + pR and thus

f(m) = F[r](m) = pF(m) = pn.(4.23)

We conclude that f |r+pZp(r + pZp) = pZp. Thus g is surjective and by (1) it is also injective. �

Corollary 4.6. Let 2 ≤ p ∈ N and F ∈ Fp. Then,

(1) ∀ r ∈ p : F|r+pZp : r + pZp → Zp is surjective and one-to-one (i.e. bijective)
In particular: ∀ n ∈ Zp : ∀ r ∈ p :

∣∣F−1(n) ∩ (r + pZp)
∣∣ = 1

(2) F : Zp → Zp is surjective and p-to-one.
In particular: ∀ n ∈ Zp :

∣∣F−1(n)
∣∣ = p.

Proof. By Lemma 3.1 we may assume without loss of generality that F is in canonical form. Then
all statements follow directly from Theorem 4.1 (2), and Lemma 4.5. �

We may construct new (p, r)-suitable functions from existing ones by multiplying them with
weakly (p, r)-suitable functions whose values are coprime to p. This fact will later be used to
identify many rational functions that are (p, r)-suitable.

Theorem 4.7. Let 2 ≤ p ∈ N, A ⊆ Zp, r ∈ p, k ⊆ N0, f : A→ Zp with f((r + pZp) ∩ A) ⊆ pZp,

and g : A→ Zp weakly (p, r)-suitable at k with gcd(p, g(n)%p) = 1 for all n ∈ (r+pZp)∩A. Then,

(1) w-suitp,r,k(f)⇔ w-suitp,r,k(fg)

(2) suitp,r,k(f)⇔ suitp,r,k(fg).

In particular, 1/g : A→ Zp exists and satisfies the same properties as g and thus f/g is (weakly)

(p, r)-suitable at k as well if and only if f is (weakly) (p, r)-suitable at k.

Proof. To prove “⇒” of (2) we need to show that

m ≡ n mod p` ⇔ ((fg)− (fg)%p)(m) ≡ ((fg)− (fg)%p)(n) mod p`(4.24)

for all ` ∈ k and m,n ∈ (r + pZp) ∩A which is equivalent to

m ≡ n mod p` ⇔ (fg)(m) ≡ (fg)(n) mod p`(4.25)

since f((r + pZp) ∩A) ⊆ pZp.
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We begin by proving “⇒”, which is the easier direction. It follows from the assumptions that

m ≡ n mod p` ⇒ f(m) ≡ f(n) mod p` ∧ g(m) ≡ g(n) mod p`(4.26)

⇒ f(m)g(m) ≡ f(n)g(m) mod p` ∧ g(n)− g(m)

p`
∈ Zp(4.27)

⇒ f(m)g(m) ≡ f(n)g(m) + f(n)
g(n)− g(m)

p`
p` mod p`(4.28)

⇒ (fg)(m) ≡ (fg)(n) mod p`.(4.29)

Note that in the above deduction we only needed that f is weakly (p, r)-suitable at k (in the first
implication), which implies that we have already proven “⇒” of (1).

For “⇐” we proceed by induction on `. If ` = 0, this is clearly true. Now assume that it is also
true for some ` ∈ k and that

(fg)(m) ≡ (fg)(n) mod p`+1.(4.30)

Then,

(fg)(m) ≡ (fg)(n) mod p`(4.31)

and thus

m ≡ n mod p`(4.32)

by the induction hypothesis. Consequently, since g is weakly (p, r)-suitable at `,

g(m) ≡ g(n) mod p`(4.33)

and hence

f(n)g(m) ≡ f(n)g(n) mod p`+1(4.34)

since f(n) ∈ pZp. But then we get

(f(m)− f(n))g(m) = f(m)g(m)− f(n)g(m) ≡ f(n)g(n)− f(n)g(n) = 0 mod p`+1.(4.35)

Since gcd(p, g(m)%p) = 1, we have 1/g(m) ∈ Zp and it follows that

f(m)− f(n) = (f(m)− f(n))g(m)
1

g(m)
≡ 0 mod p`+1.(4.36)

Consequently,

f(m) ≡ f(n) mod p`+1(4.37)

and since f is (p, r)-suitable at `+ 1, we finally get

m ≡ n mod p`+1(4.38)

which proves that fg is (p, r)-suitable at `+ 1.
For the “In particular” part we need to show that 1/g has the same properties as g, i.e. that 1/g

is weakly (p, r)-suitable at k and gcd(p, (1/g)(n)%p) = 1 for all n ∈ (r+ pZp)∩A. The latter part
follows trivially from the fact that gcd(p, g(n)%p) = 1 and g(n)(1/g)(n) = 1 for all n ∈ (r+pZp)∩A.

In order to prove that 1/g is weakly (p, r)-suitable at k, let ` ∈ k and m,n ∈ (r + pZp) ∩A. Since
(g(m)g(n))%p = ((g(m)%p)(g(n)%p))%p = 1, we have 1/(g(m)g(n)) ∈ Zp. Thus,

m ≡ n mod p` ⇒ g(m) ≡ g(n) mod p`(4.39)

⇒ g(m)
1

g(m)g(n)
≡ g(n)

1

g(m)g(n)
mod p`(4.40)

⇒ (1/g)(m) ≡ (1/g)(n) mod p`.(4.41)
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Using “⇒” of (1) and (2) and the “In particular” part, it is now straightforward to prove “⇐”
of (1) and (2). As a result we have,

w-suitp,r,k(fg)⇒ w-suitp,r,k(fg(1/g))⇒ w-suitp,r,k(f)(4.42)

suitp,r,k(fg)⇒ suitp,r,k(fg(1/g))⇒ suitp,r,k(f).(4.43)

which completes the proof. �

Polynomial p-adic systems. In this paragraph we investigate the consequences of Theorem 4.1
for p-fibred systems defined by polynomials over Zp and Qp. We will prove the surprising result
that “most” polynomial p-fibred functions have the block property and thus provide a first big
class of p-adic systems that have a rather natural representation as p-fibred functions.

Theorem 4.8. Let 2 ≤ p ∈ N, r ∈ p, f =
∑d
i=0 aix

i ∈ Zp[x] (note that for the whole theorem we
define 00 := 1), and k ∈ N0. Then,

(1) w-suitp,r,k(f)
(2) k ≤ 1⇒ suitp,r,k(f)
(3) k ≥ 2⇒

suitp,r,k(f)⇔ gcd (p, f ′(r)%p) = 1 (note: f ′(r)%p =
(∑d

i=1(ai%p)ir
i−1
)

%p)

In particular: if a0, a2, . . . , ad are given then the set of all a1 that make f (p, r)-suitable at k

is given by
{(
a−

∑d
i=2(ai%p)ir

i−1
)

%p | a ∈ p ∧ gcd (p, a) = 1
}

+ pZp.

Proof. First we note that p is not a zero divisor of Zp and therefore a = b ⇔ pa = pb for all
a, b ∈ Zp (otherwise a 6= b and pa = pb for some a, b ∈ Zp and hence a − b 6= 0 and p(a − b) = 0
which implies that p is a zero divisor). In particular,

pk | pa⇔ ∃ b ∈ Zp : ppk−1b = pa⇔ ∃ b ∈ Zp : pk−1b = a⇔ pk−1 | a(4.44)

for all a ∈ Zp and k ∈ N. Let k ∈ N0, m,n ∈ r + pZp, and bm,n ∈ Zp such that m− n = pbm,n. If
k ≤ 1, then clearly suitp,r,k(f), which proves (2). Otherwise, we get

m ≡ n mod pk ⇔ pk | m− n⇔ pk | pbm,n ⇔ pk−1 | bm,n(4.45)

and

f(m) ≡ f(n) mod pk ⇔ pk |
d∑
i=0

aim
i −

d∑
i=0

ain
i(4.46)

⇔ pk |
d∑
i=1

ai
(
mi − ni

)
(4.47)

⇔ pk | (m− n)

d∑
i=1

ai

i−1∑
j=0

mjni−1−j(4.48)

⇔ pk | pbm,n
d∑
i=1

ai

i−1∑
j=0

mjni−1−j(4.49)

⇔ pk−1 | bm,n
d∑
i=1

ai

i−1∑
j=0

mjni−1−j(4.50)

⇔ pk−1 | bm,n

p d∑
i=1

ai

i−1∑
j=0

mjni−1−j − ri−1

p
+

d∑
i=1

aiir
i−1

(4.51)

⇔ pk−1 | bm,n (pcm,n + s)(4.52)
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where

cm,n :=

d∑
i=1

ai

i−1∑
j=0

(mjni−1−j − ri−1)/p(4.53)

s :=

d∑
i=1

aiir
i−1(4.54)

and cm,n ∈ Zp, since (mjni−1−j − ri−1)%p = (rjri−1−j − ri−1)%p = 0 for all i ∈ J1, dK and j ∈ i.
Therefore, we get

∀m,n ∈ r + pZ :
(
m ≡ n mod pk ⇒ f(m) ≡ f(n) mod pk

)
(4.55)

which proves (1).
In order to prove (3) we claim(

∀m,n ∈ r + pZp : pk−1 | bm,n(pcm,n + s)⇒ pk−1 | bm,n
)
⇔ gcd (p, s%p) = 1(4.56)

for all k ≥ 2.
For “⇒” assume to the contrary that g := gcd (p, s%p) 6= 1. Let m := r and n := r − pk/g.

Then, bm,n = pk−1/g and thus pk−1 - bm,n since g 6= 1 (note: p, g, bm,n ∈ N). Next we claim
that g | s. Then bm,n(pcm,n + s) = pk−1(p/gcm,n + s/g) with p/gcm,n + s/g ∈ Zp, and hence
pk−1 | bm,n(pcm,n + s) which is a contradiction. To prove the claim let s =

∑∞
i=0 sip

i. Then

s/g = (s%p)/g +

∞∑
i=1

sip/gp
i−1 = (s%p)/g +

∞∑
i=0

si+1p/gp
i ∈ Zp(4.57)

and hence g | s.
For “⇐” we first claim that if x =

∑∞
i=0 xip

i, y =
∑∞
i=0 yip

i ∈ Zp with gcd (p, y%p) = 1, and
` ∈ N0 then

p` | xy ⇔ p` | x.(4.58)

We have

xy =

(
x%p` +

x− x%p`

p`
p`
)(

y%p` +
y − y%p`

p`
p`
)

=
(
x%p`

) (
y%p`

)
+ p`dx,y,`(4.59)

where

dx,y,` :=
(
x%p`

) y − y%p`

p`
+
x− x%p`

p`
(
y%p`

)
+
x− x%p`

p`
y − y%p`

p`
p` ∈ Zp.(4.60)

Also, gcd
(
p`, y%p`

)
= 1, since gcd (p, y%p) = 1 and thus

p` | xy ⇔ p` |
(
x%p`

) (
y%p`

)
⇔ p` | x%p` ⇔ x%p` = 0⇔ p` | x.(4.61)

Now let m,n ∈ r + pZp with pk−1 | bm,n(pcm,n + s). Then

gcd (p, (pcm,n + s)%p) = gcd (p, s%p) = 1(4.62)

and thus pk−1 | bm,n by Eqn. (4.58).

For the ”In particular” part we set t :=
∑d
i=2(ai%p)ir

i−1 and we claim that

gcd (p, (a1%p+ t)%p) = 1⇔ ∃ a ∈ p : ∃ b ∈ Zp : gcd (p, a) = 1 ∧ a1 = a− t+ pb(4.63)

for all a1 ∈ Zp. For “⇒” we set a := (a1+t)%p and b = a1+t−(a1+t)%p
p . Then clearly a1 = a−t+pb

and

gcd (p, a) = gcd (p, (a1 + t)%p) = gcd (p, (a1%p+ t)%p) = 1.(4.64)

For “⇐” we compute

gcd (p, (a1%p+ t)%p) = gcd (p, ((a− t+ pb)%p+ t)%p) = gcd (p, a) = 1.(4.65)

�
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It is possible to generalize the above result to functions defined by polynomials over Qp. Clearly,
before we can ask the question of whether such a polynomial is (weakly) (p, r)-suitable, we first
need to check if it even defines a function on Zp in the first place. Consider the example where
p = 2, r = 1, f(x) = x/2 + 1/2 ∈ Q2[x], and g(x) = x/2 + 1 ∈ Q2[x]. In this situation we have
f(n) ∈ Z2 for all n ∈ 1 + 2Z2 but g(1) = 3/2 /∈ Z2. We define the following predicate on Qp[x]
which characterizes the decisive property that f has but g has not (2 ≤ p ∈ N, r ∈ p, f ∈ Qp[x]):

integralp,r(f)⇔ f(r + pZp) ⊆ Zp f is (p, r)-integral(4.66)

The following lemma provides an easy characterization of (p, r)-integral polynomials. It involves a
generalization of the p-adic valuation νp to the case where p is not a prime, which is discussed in
the appendix.

Lemma 4.9. Let 2 ≤ p ∈ N, r ∈ p, f =
∑d
i=0 aix

i ∈ Qp[x] (note that for the whole theorem we
define 00 := 1), and

K := −min(
{
νp(ai) | i ∈ d

}
∪ {0}).(4.67)

Then,

W := pK ∩ (r + pZp)(4.68)

is a finite witness set for f being (p, r)-integral, i.e. integralp,r(f) if and only if f(W ) ⊆ Zp.

Proof. Let n ∈ r + pZp and N := n%pK ∈W . By definition of K we have pKf ∈ Zp[x]. Thus,

f(n) ∈ Zp ⇔ pKf(n) ∈ pKZp ⇔ pKf(N) ∈ pKZp ⇔ f(N) ∈ Zp.(4.69)

�

Now that we have characterized possible candidates for (weakly) (p, r)-suitable polynomials over
Qp, we are ready to formulate the following generalization of Theorem 4.8.

Theorem 4.10. Let 2 ≤ p ∈ N, r ∈ p, f : Zp → Zp, g =
∑d
i=0 aix

i ∈ Qp[x] (note that for the
whole theorem we define 00 := 1) (p, r)-integral with f(n) = g(n) for all n ∈ r + pZp, k ∈ N0,

W` := p` ∩ (r + pZp)(4.70)

for all ` ∈ N0, and

K := −min(
{
νp(ai) | i ∈ d

}
∪ {0}).(4.71)

Then, WK+k is a finite witness set for f being (weakly) (p, r)-suitable at k, i.e.

(1) w-suitp,r,k(f)⇔
∀m,n ∈WK+k : m ≡ n mod pk ⇒ (f − f%p)(m) ≡ (f − f%p)(n) mod pk

(2) suitp,r,k(f)⇔
∀m,n ∈WK+k : m ≡ n mod pk ⇔ (f − f%p)(m) ≡ (f − f%p)(n) mod pk.

Furthermore,

(3) ∀ ` ∈ JK + 1,∞K : w-suitp,r,`(f)⇒ w-suitp,r,`+1(f)
In particular: w-suitp,r,JK+1,∞K(f)⇔ w-suitp,r,K+1(f)

(4) ∀ ` ∈ JK + 2,∞K : (w-suitp,r,`(f) ∧ suitp,r,`+1(f))⇒ suitp,r,`+2(f)
In particular: suitp,r,JK+2,∞K(f)⇔ suitp,r,{K+2,K+3}(f).

In particular,

(1) w-suitp,r(f)⇔ w-suitp,r,K+1(f)⇔
∀ ` ∈ K + 1 : ∀m,n ∈WK+` : m ≡ n mod p` ⇒ (f − f%p)(m) ≡ (f − f%p)(n) mod p`

(2) suitp,r(f)⇔ suitp,r,K+3(f)⇔
∀ ` ∈ K + 3 : ∀m,n ∈WK+` : m ≡ n mod p` ⇔ (f − f%p)(m) ≡ (f − f%p)(n) mod p`.
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Proof.
(1) and (2): Let m,n ∈ r + pZp, M := m%pK+k ∈WK+k, and N := n%pK+k ∈WK+k. Then,

m ≡ n mod pk ⇔M ≡ N mod pk.(4.72)

By definition of K we have pKg ∈ Zp[x]. Thus,

(f − f%p)(m) ≡ (f − f%p)(n) mod pk(4.73)

⇔ g(m)− g(m)%p− (g(n)− g(n)%p) ∈ pkZp(4.74)

⇔ pKg(m)−
(
pKg(m)

)
%pK+1 −

(
pKg(n)−

(
pKg(n)

)
%pK+1

)
∈ pK+kZp(4.75)

⇔ pKg(M)−
(
pKg(M)

)
%pK+1 −

(
pKg(N)−

(
pKg(N)

)
%pK+1

)
∈ pK+kZp(4.76)

⇔ g(M)− g(M)%p− (g(N)− g(N)%p) ∈ pkZp(4.77)

⇔ (f − f%p)(M) ≡ (f − f%p)(N) mod pk(4.78)

which completes the proof of (1) and (2).
(3): First we will prove

m ≡ n mod pK+1 ⇒ f(m) ≡ f(n) mod p(4.79)

for all m,n ∈ r + pZp. For that let a ∈ Zp, such that n = m+ apK+1. Then,

f(m)− f(n) =

d∑
i=1

ai

(
mi −

(
m+ apK+1

)i)
(4.80)

=

d∑
i=1

ai

mi −
i∑

j=0

(
i

j

)
mj
(
apK+1

)i−j(4.81)

=

d∑
i=1

ai

i−1∑
j=0

(
i

j

)
mjai−jp(K+1)(i−j)(4.82)

= p

d∑
i=1

pKai

i−1∑
j=0

(
i

j

)
mjai−jp(K+1)(i−j−1) ∈ pZp(4.83)

and hence f(m) ≡ f(n) mod p as claimed.
Next we will show that

f
(
a+ bvp`

)
− f

(
a+ (b+ 1)vp`

)
−vp`

−
f
(
a+ cvp`

)
− f

(
a+ (c+ 1)vp`

)
−vp`

∈ pZp(4.84)

for all a, b, c, v ∈ Zp. We have,

f
(
a+ bvp`

)
− f

(
a+ (b+ 1)vp`

)
−
(
f
(
a+ cvp`

)
− f

(
a+ (c+ 1)vp`

))
(4.85)

=

d∑
i=0

ai
(
a+ bvp`

)i − d∑
i=0

ai
(
a+ (b+ 1)vp`

)i −(4.86)

d∑
i=0

ai
(
a+ cvp`

)i
+

d∑
i=0

ai
(
a+ (c+ 1)vp`

)i
=

d∑
i=0

ai

i∑
j=0

(
i

j

)
ai−jbjvjp`j −

d∑
i=0

ai

i∑
j=0

(
i

j

)
ai−j(b+ 1)jvjp`j −(4.87)

d∑
i=0

ai

i∑
j=0

(
i

j

)
ai−jcjvjp`j +

d∑
i=0

ai

i∑
j=0

(
i

j

)
ai−j(c+ 1)jvjp`j

=

d∑
i=0

ai

i∑
j=0

(
i

j

)
ai−j

(
bj − (b+ 1)j − cj + (c+ 1)j

)
vjp`j(4.88)
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=

d∑
i=2

ai

i∑
j=2

(
i

j

)
ai−j

(
bj − (b+ 1)j − cj + (c+ 1)j

)
vjp`j(4.89)

= v2p2`−K
d∑
i=2

aip
K

i∑
j=2

(
i

j

)
ai−j

(
bj − (b+ 1)j − cj + (c+ 1)j

)
vj−2p`(j−2)(4.90)

∈ v2p2`−KZp(4.91)

and hence

f
(
a+ bvp`

)
− f

(
a+ (b+ 1)vp`

)
−vp`

−
f
(
a+ cvp`

)
− f

(
a+ (c+ 1)vp`

)
−vp`

∈ vp`−KZp.(4.92)

Since ` ≥ K + 1, it follows that vp`−KZp ⊆ pZp.
Using the preliminary results above we will now prove (3). From Eqn. (4.79) it follows that

m ≡ n mod p` ⇒ f(m) ≡ f(n) mod p`(4.93)

for all m,n ∈ r + pZp and by (1) and Eqn. (4.79) again we need to show that

m ≡ n mod p`+1 ⇒ f(m) ≡ f(n) mod p`+1(4.94)

for all m,n ∈WK+`+1. Let m,n ∈WK+`+1 such that m ≡ n mod p`. Our goal is to show that

f(m)− f(n)

m− n
∈ Zp,(4.95)

because then p`+1 divides f(m) − f(n) = (m − n) f(m)−f(n)
m−n if p`+1 divides m − n (i.e. if m ≡

n mod p`+1). Assume without loss of generality that m < n (clearly, if m = n, then f(m) ≡
f(n) mod p`+1) and let a ∈ N such that n = m+ ap`. We compute,

f(m)− f(n)

m− n
=
f(m)− f

(
m+ ap`

)
−ap`

(4.96)

=
1

a

a−1∑
i=0

f
(
m+ ip`

)
− f

(
m+ (i+ 1)p`

)
−p`

.(4.97)

Since

m+ ip` ≡ m+ (i+ 1)p` mod p`(4.98)

for all i ∈ a, it follows from Eqn. (4.93) that

f
(
m+ ip`

)
≡ f

(
m+ (i+ 1)p`

)
mod p`(4.99)

and hence

f
(
m+ ip`

)
− f

(
m+ (i+ 1)p`

)
−p`

∈ Zp(4.100)

for all i ∈ a. Thus all of the a summands of Eqn. (4.97) are p-adic integers and by Eqn. (4.84)

they are pairwise congruent modulo p. If gcd(p, a) = 1, it would thus follow that f(m)−f(n)
m−n ∈ Zp

and we are done. If p and a are not coprime, let q0 ∈ p be a common divisor of p and a and let
b0 ∈ N such that a = b0q0. Then,

f(m)− f(n)

m− n
=

1

b0q0

b0q0−1∑
i=0

f
(
m+ ip`

)
− f

(
m+ (i+ 1)p`

)
−p`

(4.101)

=
1

b0

b0−1∑
j=0

1

q0

q0−1∑
i=0

f
(
m+ (jq0 + i)p`

)
− f

(
m+ (jq0 + i+ 1)p`

)
−p`

(4.102)
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where all summands of the inner sum are p-adic integers that are pairwise congruent modulo p by
Eqn. (4.84). Thus, the whole inner sum is divisible by q0 and we get

f(m)− f(n)

m− n
=

1

b0

b0−1∑
i=0

f
(
m+ iq0p

`
)
− f

(
m+ (i+ 1)q0p

`
)

−q0p`
(4.103)

where all of the summands are again p-adic integers. As before, if gcd(p, b0) = 1, we are done, and
if p and b0 are not coprime, we let q1 ∈ p be a common divisor of p and b0, and b1 ∈ N such that
b0 = b1q1. Then,

f(m)− f(n)

m− n
=

1

b1q1

b1q1−1∑
i=0

f
(
m+ iq0p

`
)
− f

(
m+ (i+ 1)q0p

`
)

−q0p`
(4.104)

=
1

b1

b1−1∑
j=0

1

q1

q1−1∑
i=0

f
(
m+ (jq1 + i)q0p

`
)
− f

(
m+ (jq1 + i+ 1)q0p

`
)

−q0p`
.(4.105)

where, again, all summands of the inner sum are p-adic integers that are pairwise congruent modulo
p by Eqn. (4.84). Thus, the whole inner sum is divisible by q1 and we get

f(m)− f(n)

m− n
=

1

b1

b1−1∑
i=0

f
(
m+ iq1q0p

`
)
− f

(
m+ (i+ 1)q1q0p

`
)

−q1q0p`
(4.106)

where all of the summands are again p-adic integers. Continuing iteratively we find u ∈ N0 (since
a ∈ N cannot be a zero divisor), q0, . . . , qu−1 ∈ p, and b0, . . . , bu−1 ∈ N such that a = b0q0,
bi = bi+1qi+1 for all i ∈ u− 1, q0 is a common divisor of p and a, qi+1 is a common divisor of p
and bi for all i ∈ u− 1. Furthermore,

f(m)− f(n)

m− n
=

1

bu−1

bu−1−1∑
i=0

f
(
m+ iqu−1 · · · q0p`

)
− f

(
m+ (i+ 1)qu−1 · · · q0p`

)
−qu−1 · · · q0p`

,(4.107)

with all summands being p-adic integers, and gcd(p, bu−1) = 1. But then f(m)−f(n)
m−n ∈ Zp, which

completes the proof of (3).
(4): From Eqn. (4.79) it follows that

m ≡ n mod p` ⇒ f(m) ≡ f(n) mod p`(4.108)

m ≡ n mod p`+1 ⇔ f(m) ≡ f(n) mod p`+1(4.109)

for all m,n ∈ r + pZp and by (2), (3), and Eqn. (4.79) we need to show that

f(m) ≡ f(n) mod p`+2 ⇒ m ≡ n mod p`+2(4.110)

for all m,n ∈ WK+`+2. Let m,n ∈ WK+`+2 such that f(m) ≡ f(n) mod p`+1. Then m ≡
n mod p`+1 and we have f(m)−f(n)

m−n ∈ Zp by Eqn. (4.95). Our goal is to show that

gcd

(
p,
f(m)− f(n)

m− n
%p

)
= 1(4.111)

because then (cf. Eqn. (4.58)) p`+2 divides m−n if p`+2 divides f(m)− f(n) = (m−n) f(m)−f(n)
m−n

(i.e. if f(m) ≡ f(n) mod p`+2). Assume without loss of generality that m < n (clearly, if m = n,
then m ≡ n mod p`+2) and let a ∈ N such that n = m+ ap`+1.

As a preliminary step we will prove that

gcd (p, bi%p) = 1,(4.112)

for all i ∈ Z, where

bi :=
f
(
m+ ip`

)
− f

(
m+ (i+ 1)p`

)
−p`

(4.113)
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which is in Zp by Eqn. (4.95) (here we need w-suitp,r,`(f)). For that assume to the contrary that
there is a divisor q ∈ J2, pK of p such that

∃ i ∈ Z : gcd (p, bi%p) = q.(4.114)

By Eqn. (4.84) the least significant digits of all bi coincide, say bi%p = s ∈ p for all i ∈ Z, which
implies,

∀ i ∈ Z : gcd (p, bi%p) = gcd (p, s) = q.(4.115)

We compute

f (m)− f
(
m+ p/qp`

)
−p`

=

p/q−1∑
i=0

bi(4.116)

= p

p/q−1∑
i=0

bi − s+ s

p
(4.117)

= p

s
q

+

p/q−1∑
i=0

bi − bi%p
p

 ∈ pZp(4.118)

which implies that f (m) ≡ f
(
m+ p/qp`

)
mod p`+1. But then m ≡ m + p/qp` mod p`+1 by

suitp,r,`+1(f) which is a contradiction, since q divides p and q ≥ 2. This completes the proof of
Eqn. (4.112).

Furthermore, we need the following general fact:

∀ r ∈ p2 : ∀ a ∈ N, a | p (in Zp) : ∀ b0, . . . , ba−1 ∈ r + p2Zp :
1

a

a−1∑
i=0

bi ≡ r mod p.(4.119)

In order to prove it let ci ∈ Zp such that bi = r + p2ci for all i ∈ a. Then,

1

a

a−1∑
i=0

bi =
1

a

a−1∑
i=0

(
r + p2ci

)
= r + p

p

a

a−1∑
i=0

ci ≡ r mod p.(4.120)

We continue with the proof of Eqn. (4.111) and compute

f(m)− f(n)

m− n
=
f(m)− f

(
m+ ap`+1

)
−ap`+1

(4.121)

=
1

a

a−1∑
i=0

f
(
m+ ip`

)
− f

(
m+ (i+ 1)p`

)
−p`

.(4.122)

By Eqn. (4.112) it follows that the least significant digits of all summands of Eqn. (4.122) are
coprime to p. Furthermore, they are all congruent modulo p2 by Eqn. (4.92), since ` ≥ K + 2. If

gcd(p, a) = 1 (in which case a divides p in Zp), it would thus follow that gcd
(
p, f(m)−f(n)

m−n %p
)

= 1

due to Eqn. (4.119). If p and a are not coprime, let q0 ∈ p be a common divisor of p and a and let
b0 ∈ N such that a = b0q0. Then,

f(m)− f(n)

m− n
=

1

b0q0

b0q0−1∑
i=0

f
(
m+ ip`

)
− f

(
m+ (i+ 1)p`

)
−p`

(4.123)

=
1

b0

b0−1∑
j=0

1

q0

q0−1∑
i=0

f
(
m+ (jq0 + i)p`

)
− f

(
m+ (jq0 + i+ 1)p`

)
−p`

(4.124)
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where all summands of the inner sum are p-adic integers that are pairwise congruent modulo p2 by
Eqn. (4.92), while their least significant digits are coprime to p. Thus, the least significant digits
of the outer summands (i.e. the inner sum divided by q0) are coprime to p by Eqn. (4.119), since
q0 divides p and we get

f(m)− f(n)

m− n
=

1

b0

b0−1∑
i=0

f
(
m+ iq0p

`
)
− f

(
m+ (i+ 1)q0p

`
)

−q0p`
(4.125)

where the least significant digits of the summands are coprime to p. As before, if gcd(p, b0) = 1,
we are done by Eqn. (4.119), and if p and b0 are not coprime, we let q1 ∈ p be a common divisor
of p and b0, and b1 ∈ N such that b0 = b1q1. Then,

f(m)− f(n)

m− n
=

1

b1q1

b1q1−1∑
i=0

f
(
m+ iq0p

`
)
− f

(
m+ (i+ 1)q0p

`
)

−q0p`
(4.126)

=
1

b1

b1−1∑
j=0

1

q1

q1−1∑
i=0

f
(
m+ (jq1 + i)q0p

`
)
− f

(
m+ (jq1 + i+ 1)q0p

`
)

−q0p`
.(4.127)

where, again, all summands of the inner sum are p-adic integers that are pairwise congruent modulo
p2 by Eqn. (4.92), and their least significant digits are coprime to p. Thus, the least significant
digits of the outer summands (i.e. the inner sum divided by q1) are coprime to p by Eqn. (4.119),
since q1 divides p and we get

f(m)− f(n)

m− n
=

1

b1

b1−1∑
i=0

f
(
m+ iq1q0p

`
)
− f

(
m+ (i+ 1)q1q0p

`
)

−q1q0p`
(4.128)

where the least significant digits of the summands are coprime to p. Continuing iteratively we find
u ∈ N0 (since a ∈ N cannot be a zero divisor), q0, . . . , qu−1 ∈ p, and b0, . . . , bu−1 ∈ N such that
a = b0q0, bi = bi+1qi+1 for all i ∈ u− 1, q0 is a common divisor of p and a, qi+1 is a common
divisor of p and bi for all i ∈ u− 1,

f(m)− f(n)

m− n
=

1

bu−1

bu−1−1∑
i=0

f
(
m+ iqu−1 · · · q0p`

)
− f

(
m+ (i+ 1)qu−1 · · · q0p`

)
−qu−1 · · · q0p`

(4.129)

with the least significant digits of the summands being coprime to p, and gcd(p, bu−1) = 1. But

then gcd
(
p, f(m)−f(n)

m−n %p
)

= 1 by Eqn. (4.119) which completes the proof of (4). �

The difference it makes to go from polynomials in Zp[x] to (p, r)-integral polynomials in Qp[x]
in the context of p-adic systems is quite remarkable. While all polynomials in Zp[x] are (p, r)-
integral (trivially) and weakly (p, r)-suitable (Theorem 4.8) for all 2 ≤ p ∈ N and all r ∈ p,
both need to be checked algorithmically for polynomials in Qp[x] (Lemma 4.9 and Theorem 4.10).
f(x) = 1/2x is an easy example of a polynomial that is (2, 0)-integral but not weakly (2, 0)-suitable
at 2 (f(0) = 0 6≡ 2 = f(22) mod 22). Furthermore, it is very easy to check whether a polynomial
f ∈ Zp[x] is (p, r)-suitable, as this only depends on the derivative of f in r (Theorem 4.8). For
polynomials in Qp[x] however, (p, r)-suitability needs to be checked algorithmically (Theorem 4.10).
As an example consider f(x) = 1/4x3 + x2 + x which is (2, 0)-integral, weakly (2, 0)-suitable, but
not (2, 0)-suitable at 2 (f(0) = 0 ≡ 23 = f(2) mod 22) despite the fact that f ′(0) = 1 is coprime
to 2. f(x) = 1/8x3 + x2 + x defines a polynomial that is not even weakly (2, 0)-suitable at 2
(f(2) = 7 6≡ 69 = f(2 + 22) mod 22) and yet again f ′(0) = 1. Another difference is that for
any p-adic system F defined by polynomials in Zp[x] there exits a p-adic system G defined by
polynomials in Zp[x] that is a weak canonical form of F (e.g. (x, 3x+ 1) which is a weak canonical
form of (x + 1, 3x + 2)). For p-adic systems defined by polynomials in Qp[x] this is no longer the
case. Indeed, if f(x) = 1/16x4 + x3 + 1/2x2 + x+ 1, then f is (2, 0)-integral (even (2, 0)-suitable)
but f(0) = 1 6≡ 14 = f(2) mod 2, so the 2-adic system F := (f(x), x − 1) does not have a weak
canonical form that can be expressed with polynomials (a weak canonical form of F is given by
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((f − f%2)(x), x− 1) but f − f%2 is not a polynomial function). Further indications of the much
more erratic behavior of polynomials in Qp[x] are given by the following examples. Let

f(x) = −3/512x7 + 1/128x5 + x4 + 1/8x2 + 1(4.130)

g(x) = 1/512x7 + 1/128x5 + x4 + 1/8x2 + 1(4.131)

h(x) = 1/32x11 + 1/2x9 + 1/16x8 + 1/16x7 +(4.132)

1/8x6 + 1/16x5 + 1/32x4 + 1/8x3 − 1/8x2 + x+ 1

and k ∈ N. Then f , g, and h are (2, 0)-integral and we have

w-suit2,0,k(f)⇔ k ∈ {1, 3}(4.133)

suit2,0,k(f)⇔ k ∈ {1}(4.134)

w-suit2,0,k(g)⇔ k ∈ {1} ∪ J4,∞K(4.135)

suit2,0,k(g)⇔ k ∈ {1}(4.136)

w-suit2,0,k(h)⇔ k ∈ {1} ∪ J3,∞K(4.137)

suit2,0,k(h)⇔ k ∈ {1, 3} .(4.138)

Next, we will fix our notions in relation to p-adic systems defined by polynomials. We define
the following predicates on Fp (2 ≤ p ∈ N, F ∈ Fp, A ⊆ Qp, D ⊆ N0 ∪ {−∞}):

polyA,D(F) ⇔ domZp(F) F is A-polynomial with degree in D or, if D = {d},(4.139)

∀ r ∈ p : F[r]|r+pZp ∈ A[x] F is A-polynomial of degree d

deg(F[r]|r+pZp) ∈ D
polyA(F) ⇔ polyA,N0∪{−∞}(F) F is A-polynomial(4.140)

poly(F) ⇔ polyQp,N0∪{−∞}(F) F is polynomial(4.141)

lin-polyA(F)⇔ polyA,{−∞,0,1}(F) F is A-linear-polynomial(4.142)

lin-poly(F) ⇔ polyQp,{−∞,0,1}(F) F is linear-polynomial(4.143)

Using our new predicates it is easy to formulate the following corollary to Theorem 4.8.

Corollary 4.11. Let 2 ≤ p ∈ N and F ∈ Fp(polyZp). Then,

(1) w-block-S(F)
(2) block(F)⇔ ∃ k ∈ J2,∞K : blockk(F).

Proof. Follows directly from Theorem 4.8. �

A similar corollary to Theorem 4.10 can also be formulated.

Corollary 4.12. Let 2 ≤ p ∈ N, F ∈ Fp(poly), and K ∈ N0 such that −K is the minimum of 0
and the p-adic valuations of all coefficients of the polynomials F[r]|r+pZp , r ∈ p. Then,

(1) w-block-S(F)⇔ w-block-SK+1(F)
(2) block(F)⇔ blockK+3(F).

Proof. Follows directly from Theorem 4.10. �

Theorem 4.8 and Corollary 4.11 have a remarkable consequence: every Zp-polynomial p-fibred
function has the weak block property and “almost all” of them also have the block property in
the sense that if P0, . . . , Pp−1 ∈ Zp[x] are arbitrary, then there are a0, . . . , ap−1 ∈ p such that
(P0(x)+a0x, . . . , Pp−1(x)+ap−1x) has the block property. In other words: every p-fibred function
defined by polynomials over Zp can be turned into a p-adic system by only modifying the linear
coefficients! By Theorem 4.8 all of the following p-fibred functions are examples of p-adic systems:
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• (x)p = (x, . . . , x) ∈ Fp where 2 ≤ p ∈ N (standard base p)
• (x, 3x+ 1) ∈ F2 (Collatz)
• (7x3 − 4x2 + x− 6, 3x7 − x+ 1, x2 + 6x+ 2) ∈ F3

• ( 32
7 x

2 + 5
3x− 4, 1311x+ 5, 1

17x+ 2, 3x2 + 7
19x−

14
5 ) ∈ F4

• (ix2 + x, 5ix4 − 2 + 7, x+ 3,−9x3 + 12x+ 7,−5ix2 + x+ 1) ∈ F5

where i2 = −1, i.e. i ∈ {. . . 2431212, . . . 2013233} ⊆ Z5

•
(∏p−1

i=0 (x− i)
)p
∈ Fp where p ∈ P.

Theorem 4.10 provides the following additional examples of p-adic systems:

• ( 17
4 x

6 + 37
16x

5− 107x4− 15
4 x

3 + 78x2 + 3x− 2,−25x6 + 7
4x

5− 49
2 x

4− 21
2 x

3 + 5x2 + 79
4 x+ 19

2 ) ∈ F2

• (− 23
27x

3 − 11x2 + x− 20,−28x4 + 7
9x

3 + 29
3 x

2 + 4
3x+ 11

9 ,−2x4 − 29
9 x

3 − 5
3x

2 − 11
3 x−

2
9 ) ∈ F3.

A direct consequence of the fact that every Zp-polynomial p-fibred function has the weak block
property is, that whenever we extend a p-fibred function F with domain Z that is defined by
polynomial functions with integer coefficients (such as Fp or FC) to Zp by simply changing the
domain from Z to Zp while keeping the polynomials fixed (cf. Eqn. (1.1) and Eqn. (1.3)), the
p-digit table of the new extended p-fibred function will coincide with the unique extension of the
p-digit table of F as given by Lemma 3.15.

Corollary 4.13. Let 2 ≤ p ∈ N, G ∈ Fp(polyZ), F := G|Z, and E ∈ Dp(domZp ,w-block) such that
E|Z = D(F) (cf. Lemma 3.15 and note that w-block(F ) by Corollary 4.11 (1)). Then, E = D(G).

Proof. Follows directly from Corollary 3.16 and Corollary 4.11 (1). �

It is possible to reduce the degrees of the polynomials defining a Zp-polynomial p-fibred function
F to k − 1 while keeping D(F)JkK constant. In order to prove this we need the following lemma
which utilizes the well-known notion of Vandermonde matrices.

Lemma 4.14. Let 2 ≤ p ∈ N, r ∈ p, f ∈ Zp[x], and k ∈ N. Furthermore, let

A :=
(
(r + ip)j

)
i,j∈k =

(r + (0 )p)0 . . . (r + (0 )p)k−1

...
...

(r + (k − 1)p)0 . . . (r + (k − 1)p)k−1

 ∈ Nk×k(4.144)

b :=

f(r + (0 )p)
...

f(r + (k − 1)p)

 ∈ Zkp(4.145)

(note that for the whole theorem we define 00 := 1). Then A is invertible, A−1 · b ∈ Zkp, and

g(x) :=
(
(A−1 · b)%pk

)
· (1, x, . . . , xk−1)(4.146)

satisfies g(x) ∈ pk[x], deg(g) ≤ k − 1, and f(n) ≡ g(n) mod pk for all n ∈ r + pZp.

Proof. We consider the following system of k equations in a0, . . . , ak−1 ∈ Qp
a0(r + (0 )p)0 + · · ·+ ak−1(r + (0 )p)k−1 = f(r + (0 )p)

...
a0(r + (k − 1)p)0 + · · ·+ ak−1(r + (k − 1)p)k−1 = f(r + (k − 1)p)

(4.147)

which is solved by (a0, . . . , ak−1) = A−1 · b ∈ Qkp. It can be easily verified by induction on k that

det(A) =

k−1∏
i=0

i!pi 6= 0(4.148)

which implies that A−1 does indeed exist. To prove that A−1 · b ∈ Zkp let u, v ∈ Zp[x] with
deg(v) < k such that

f(x) =

(
k−1∏
i=0

(x− (r + ip))

)
u(x) + v(x).(4.149)
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Then v(r + ip) = f(r + ip) for all i ∈ k, which implies that the polynomial v of degree less than k
interpolates the k points (r + ip, f(r + ip)), i ∈ k and thus is uniquely defined (within Qp[x]). In
the same way the polynomial (A−1 · b) · (1, x, . . . , xk−1) is of degree less than k and interpolates the
same points, which implies that (A−1 · b) · (1, x, . . . , xk−1) = v(x) ∈ Zp[x] and hence A−1 · b ∈ Zkp.

We are left to show that f(n) ≡ g(n) mod pk for all n ∈ r + pZp and compute

f(r + ap)− v(r + ap) =

(
k−1∏
i=0

(r + ap− (r + ip))

)
u(r + ap)(4.150)

= pk

(
k−1∏
i=0

(a− i)

)
u(r + ap)(4.151)

∈ pkZp(4.152)

for all a ∈ Zp. Hence f(n) ≡ v(n) ≡ g(n) mod pk for all n ∈ r + pZp. �

Theorem 4.15. For arbitrary 2 ≤ p ∈ N, r ∈ p, f ∈ Zp[x], and k ∈ N let gp,r,f,k ∈ pk[x]
denote the polynomial g(x) in Lemma 4.14 for the given parameters p, r, f, k. Let 2 ≤ p ∈ N,
F ∈ Fp(domZp ,polyZp), and k ∈ N. Furthermore, let G ∈ Fp(domZp ,poly) such that G[r](x) =

gp,r,F [r],k(x) for all r ∈ p. Then polypk,k(G) and D(F)JkK = D(G)JkK.

Proof. Follows directly from Theorem 4.8 (1) (F[r] is weakly (p, r)-suitable for all r ∈ p), The-
orem 4.1 (1) (therefore F has the weak block property), Corollary 3.8 (2) (thus D(F)JkK =
D((F[0]%pk, . . . ,F[p− 1]%pk))JkK), and Lemma 4.14 (thus D(F)JkK = D(G)JkK). �

As an example consider the 2-adic system F := (−36x9 − 67x8 − 47x7 − 35x6 − 13x5 + 79x4 −
40x3 + 95x2 + 75x + 4, 15x9 − x8 − 58x7 − 92x6 − 68x5 + 10x4 − 54x3 + 98x2 − 10x + 48) and
k := 4. By Theorem 4.15 the 2-adic system G := (8x3 + 11x2 + 11x + 4, 14x2 + x + 1) satisfies
D(F)J4K = D(G)J4K and this is indeed the case.

p-adic systems defined by rational functions. Using the results from the previous subsection
and Theorem 4.7, we can identify many rational functions that are (p, r)-suitable.

Theorem 4.16. Let 2 ≤ p ∈ N, r ∈ p, f : Zp → Zp, g, h ∈ Zp[x] such that gcd(p, h(r)%p) = 1
and f(n) = g(n)/h(n) for all n ∈ r + pZp, and k ∈ N0. Then,

(1) w-suitp,r,k(f)
(2) k ≤ 1⇒ suitp,r,k(f)
(3) k ≥ 2⇒ (suitp,r,k(f)⇔ suitp,r,k(g − (f(r)%p)h)).

Note that g − (f(r)%p)h in (3) is a polynomial in Zp[x], which implies that we can use Theo-
rem 4.8 (3) to check whether it is (p, r)-suitable at k.

Proof of Theorem 4.16. (2) is clearly true for any function f . In order to prove (1) and (3) we first
observe that

f(n) =
g(n)

h(n)
=
g(n)− (f(r)%p)h(n)

h(n)
+ f(r)%p(4.153)

for all n ∈ r + pZp. Thus, f is (weakly) (p, r)-suitable if and only if

f̂ : Zp → Zp(4.154)

n 7→

{
g(n)−(f(r)%p)h(n)

h(n) if n ∈ r + pZp
f(n) if n /∈ r + pZp

is (weakly) (p, r)-suitable. Furthermore,

(g(n)h(r)− g(r)h(n))%p = 0(4.155)

for all n ∈ r + pZp, and hence

f̂(n)%p = (f(n)− f(r))%p =
g(n)h(r)− g(r)h(n)

h(n)h(r)
%p = 0(4.156)
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for all n ∈ r + pZp, since gcd(p, h(r)%p) = 1. Thus f̂ (a quotient of two functions) satisfies
all conditions of Theorem 4.7 and (1) and (3) follow from the “In particular” part and from
Theorem 4.8 (in particular one needs that all polynomials are weakly (p, r)-suitable and also, for
k ≥ 2, that a polynomial is (p, r)-suitable at k if and only if it is (p, r)-suitable at k). �

Since the question of (weak) suitability of the rational functions treated in Theorem 4.16 reduces to
a questions of (weak) suitability of polynomial functions, as a result we get the following analogue
of Corollary 4.11.

Corollary 4.17. Let 2 ≤ p ∈ N and F ∈ Fp(domZp) such that for all r ∈ p there are gr, hr ∈ Zp[x]
with gcd(p, hr(r)%p) = 1 and F[r](n) = gr(n)/hr(n) for all n ∈ r + pZp (cf. the assumptions of
Theorem 4.16). Then,

(1) w-block-S(F)
(2) block(F)⇔ ∃ k ∈ J2,∞K : blockk(F).

Proof. Follows directly from Corollary 4.11 and Theorem 4.16. �

Given Theorem 4.16 all of the following p-fibred functions are examples of p-adic systems:

•
(

1
3x+1 ,

1
x

)
∈ F2 (inverse Collatz)

•
(
x3−3x2+7x−1

5x2−3 , 6x
5+13x4−9x+4
19x3−3x2+1

)
∈ F2

•
(

3x3−x
x−5 , 1

7x−2 ,
2x−9
x−1 ,

5x−7
x2−2 ,

−2x+1
x−3 , 5x

2+x
x2−6

)
∈ F6.

One open problem is the characterization of all rational functions on Zp that are (weakly) (p, r)
suitable, i.e. dropping the assumption gcd(p, h(r)%p) = 1 in Theorem 4.16. This would also be a
generalization of Theorem 4.10 which treats such rational functions requiring in return the function
in the denominator to be constant. It appears likely that there is an analogue of Theorem 4.10 for
this general situation, i.e. that one can find a finite witness set to check (weak) (p, r)-suitability
at k and that it suffices to check (weak) (p, r)-suitability at k for finitely many k to get full (weak)
(p, r)-suitability. An educated guess for the general situation might be given by the following
conjecture (cf. Theorem 4.10).

Conjecture 4.18. Let 2 ≤ p ∈ N, r ∈ p, f : Zp → Zp, g, h ∈ Zp[x] such that f(n) = g(n)/h(n)
for all n ∈ r + pZp, k ∈ N0,

W` := p` ∩ (r + pZp)(4.157)

for all ` ∈ N0, and

K := max({νp(h(n)) | n ∈ r + pZp}) ∈ N0(4.158)

(note that this maximum exists and is in N0 because otherwise h would have a root in r + pZp
which contradicts the assumption f(n) = g(n)/h(n) for n ∈ r + pZp).
Then, WK+k is a finite witness set for f being (weakly) (p, r)-suitable at k, i.e.

(1) w-suitp,r,k(f)⇔
∀m,n ∈WK+k : m ≡ n mod pk ⇒ (f − f%p)(m) ≡ (f − f%p)(n) mod pk

(2) suitp,r,k(f)⇔
∀m,n ∈WK+k : m ≡ n mod pk ⇔ (f − f%p)(m) ≡ (f − f%p)(n) mod pk.

Furthermore,

(3) ∀ ` ∈ JK + 1,∞K : w-suitp,r,`(f)⇒ w-suitp,r,`+1(f)
In particular: w-suitp,r,JK+1,∞K(f)⇔ w-suitp,r,K+1(f)

(4) ∀ ` ∈ JK + 2,∞K : (w-suitp,r,`(f) ∧ suitp,r,`+1(f))⇒ suitp,r,`+2(f)
In particular: suitp,r,JK+2,∞K(f)⇔ suitp,r,{K+2,K+3}(f).

In particular,
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(1) w-suitp,r(f)⇔ w-suitp,r,K+1(f)⇔
∀ ` ∈ K + 1 : ∀m,n ∈WK+` : m ≡ n mod p` ⇒ (f − f%p)(m) ≡ (f − f%p)(n) mod p`

(2) suitp,r(f)⇔ suitp,r,K+3(f)⇔
∀ ` ∈ K + 3 : ∀m,n ∈WK+` : m ≡ n mod p` ⇔ (f − f%p)(m) ≡ (f − f%p)(n) mod p`.

Unfortunately, a general proof could not be given by now and will be subject of future work.

5. Generalizing Hensel’s Lemma using p-adic systems

In this section we use p-adic systems to give a very easy and accessible proof of a surpris-
ingly radical generalization of a famous lemma due to Kurt Hensel which has several equivalent
formulations one of which reads as follows [21].

Lemma 5.1 (Hensel’s Lemma). Let p be a prime, r ∈ p, and f ∈ Zp[x] such that f(r)%p = 0 and
f ′(r)%p 6= 0. Then, f has a unique root in r + pZp.

The generalization we will prove below is given by the following theorem.

Theorem 5.2. Let 2 ≤ p ∈ N, r ∈ p, and f ∈ (Zp)Zp such that f(r + pZp) ⊆ pZp and suitp,r(f).
Then, f has a unique root in r + pZp.

A comparison of the differing assumptions of Hensel’s Lemma and the above theorem shows:

(1) p ∈ P → 2 ≤ p ∈ N
(2) f ∈ Zp[x] → f ∈ (Zp)Zp
(3) f(r)%p = 0 → f(r + pZp) ⊆ pZp (⇔ f(r)%p = 0 if f ∈ Zp[x])
(4) f ′(r)%p 6= 0 → suitp,r(f) (⇔ f ′(r)%p 6= 0 if p ∈ P and f ∈ Zp[x] by Theorem 4.8 (3)).

The generalizing aspect of Theorem 5.2 is entailed by (1) and (2), while (3) and (4) are necessary
adaptations of the conditions on f . It can be seen that the theorem’s conditions in (3) and (4) are
equivalent to their corresponding versions in Hensel’s Lemma if one assumes that p is prime and f
is a polynomial function with coefficients in Zp. The most remarkable difference is probably given
by (2), where the assumption that f is a polynomial function is dropped and arbitrary functions
on Zp are allowed. It should be noted that the idea of generalizing Hensel’s Lemma by dropping
the assumption that f is a polynomial function, is not new. A related result can be found in [60]
which considers general functions on Zp, but only considers the case where p is prime. The further
generalization which is given in the following subsection appears to be completely new, however.
In order to prove Theorem 5.2 we need the following lemma.

Lemma 5.3. Let 2 ≤ p ∈ N, r ∈ p, A ⊆ Zp, a, b ∈ Zp, f, g, h : A→ Zp such that

g(n) = f(n) + an+ b(5.1)

h(n) = f(n) + apn+ b(5.2)

for all n ∈ A, and k ∈ N0. Then,

(1) w-suitp,r,k(f)⇒ w-suitp,r,k(g)
(2) suitp,r,k(f)⇒ suitp,r,k(h).

Proof. The statements are clearly true if a = 0, hence we may assume without loss of generality
that b = 0 and f((r + pZp) ∩A) ⊆ pZp.
(1): Let m,n ∈ (r + pZp) ∩A. Then,

m ≡ n mod pk ⇒ m ≡ n mod pk ∧ f(m) ≡ f(n) mod pk(5.3)

⇒ f(m) + am ≡ f(n) + an mod pk(5.4)

⇒ g(m) ≡ g(n) mod pk.(5.5)

(2): Let m,n ∈ (r + pZp) ∩A. Then,

m ≡ n mod pk ⇒ h(m) ≡ h(n) mod pk(5.6)
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by (1) and we are left to show that

h(m) ≡ h(n) mod pk ⇒ m ≡ n mod pk.(5.7)

Assume to the contrary that h(m) ≡ h(n) mod pk and m 6≡ n mod pk. Let

` := max
{
i ∈ N0 : m ≡ n mod pi

}
.(5.8)

Then ` < k and

` = max
{
i ∈ N0 : f(m) ≡ f(n) mod pi

}
(5.9)

since suitp,r,k(f). Let c, d, e ∈ Zp such that h(m) = h(n)+cpk, m = n+dp` and f(m) = f(n)+ep`.
Then,

f(m) + apm = f(n) + apn+ cpk ⇔ f(n) + ep` + ap(n+ dp`) = f(n) + apn+ cpk(5.10)

⇔ ep` + adp`+1 = cpk(5.11)

⇔ e+ adp = cpk−`(5.12)

⇔ e = p(cpk−`−1 − ad)(5.13)

where cpk−`−1 − ad ∈ Zp. Hence, f(m) ≡ f(n) mod p`+1 which is a contradiction. �

Note that the stronger version

suitp,r,k(f)⇒ suitp,r,k(h)(5.14)

of (2) is not true in general as the following example shows.

Example 5.4. Let f : Z2 → Z2 such that f(n) = (n%8 = 2 ? 4 : (n%8 = 4 ? 2 : n%8)), a = 1,
b = 0, and h : Z2 → Z2 with h(n) = f(n) + 2an+ b = f(n) + 2n for all n ∈ N2. Then, suit2,0,3(f)
but ¬suit2,0,3(h), since 0 6≡ 2 mod 23 but h(0) = 0 ≡ 8 = h(2) mod 23. Note that ¬suit2,0,2(f)
since 0 6≡ 2 mod 22 but f(0) = 0 ≡ 4 = f(2) mod 22, which is what makes the counter-example
possible.

Proof of Theorem 5.2. Let g ∈ (Zp)Zp with g(n) = f(n) + pn for all n ∈ Zp. Then, suitp,r(g)
by Lemma 5.3 (2) and also g(r + pZp) ⊆ pZp. Let idZp denote the identity function on Zp and

F := (idZp)r ·(g) ·(idZp)p−r−1. Then, F ∈ Fp by Theorem 4.1 (2) and thus there is a unique n ∈ Zp
such that D(F)[n] = (r)∞ by Lemma 3.11. It follows that n ∈ r + pZp and D(F)[n] = D(F)[F(n)].
Thus, n = F(n) = (g(n) − g(n)%p)/p = g(n)/p by Lemma 3.9, i.e. f(n) = g(n) − pn = 0. If
m ∈ r + pZp and f(m) = 0, then F(m) = g(m)/p = m and hence D(F)[m] = (r)∞. Thus m = n,
again by Lemma 3.9. �

An important application of Hensel’s Lemma lies in proving that certain real or complex numbers
that are defined by polynomial equations (such as

√
2 or i) have counterparts within Zp for some

2 ≤ p ∈ N. Examples are given below. Note that the polynomial function f always satisfies the
conditions of Hensel’s Lemma (respectively Theorem 5.2).

Example 5.5.

1) p = 2, r = 1, f(x) = x2 − x− 4 → ±
√

17 ∈ Z2

2) p = 3, r ∈ {1, 2}, f(x) = x2 + 2 → ±
√
−2 ∈ Z3

3) p = 5, r ∈ {2, 3}, f(x) = x2 + 1 → ±i ∈ Z5

4) p = 7, r ∈ {3, 4}, f(x) = x2 − 2 → ±
√

2 ∈ Z7

5) p ∈ P, r ∈ J1, p− 1K, f(x) = xp−1 − 1 →
∣∣{x ∈ Zp | xp−1 = 1

}∣∣ = p− 1.

It is conceivable that the generalization of Hensel’s Lemma given by Theorem 5.2 allows for similar
deductions when applied to other classes of functions. Exploring such possibilities could be the
subject of future research.

As we have seen above, (p, r)-suitable functions that map r+ pZp to pZp have a unique root in
r + pZp. The following theorem examines the converse direction for polynomial functions.
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Theorem 5.6. Let 2 ≤ p ∈ N, r ∈ p, and f ∈ Zp[x] such that f(r)%p = 0. Then, suitp,r(f) if
and only if f has a unique root a in r + pZp and gcd (p, g(r)%p) = 1, where g ∈ Zp[x] such that
f(x) = (x− a)g(x) for all x ∈ Zp.

Proof. First we note that suitp,r(f)⇔ gcd (p, f ′(r)%p) = 1 by Theorem 4.8 (3).
Next we prove “⇒”. f has a unique root a in r+ pZp by Corollary 5.2. Let g ∈ Zp[x] such that

f(x) = (x− a)g(x) for all x ∈ Zp. Then,

f ′(x) = g(x) + (x− a)g′(x)(5.15)

and hence

1 = gcd (p, f ′(r)%p) = gcd (p, (g(r) + (r − a)g′(r))%p) = gcd (p, g(r)%p) .(5.16)

To prove “⇐” we analogously compute

1 = gcd (p, g(r)%p) = gcd (p, (g(r) + (r − a)g′(r))%p) = gcd (p, f ′(r)%p) .(5.17)

�

Even if p ∈ P, the condition gcd (p, g(r)%p) = 1 in the above theorem cannot be dropped which is
shown by the following example.

Example 5.7. If f(x) := (x−1)(x2 +1), then {x ∈ 1 + 2Z2 | f(x) = 0} = {1} but ¬suit2,1(f) (note
that g(x) = x2 + 1 here).

p-fibred rational functions and a further generalization of Hensel’s Lemma. In the re-
maining part of this section we investigate another generalization of Hensel’s Lemma which in-
volves several (p, r)-suitable functions at once and allows for arbitrary compositions while keeping
a unique root in a given residue class. Before we can formulate the results, we need to extend
our framework by a new notion closely related to p-fibred functions which we formally defined
in Section 2. Let 2 ≤ p ∈ N. The elements of any set S(bnd(Qp)A , lenp) where A ⊆ Qp, are
called p-fibred rational functions, i.e. a p-fibred rational function R = (R[0], . . . ,R[p − 1]) is a
p-tuple of functions R[r] : A → Qp, r ∈ p, on some fixed subset A of the p-adic numbers. The
set of all p-fibred rational functions shall be denoted by Rp. For any p-fibred rational function
R ∈ S(bnd(Qp)A , lenp) we set dom(R) := A, the domain of R. For any subset A of dom(R) we
define R|A := (R[0]|A, . . . ,R[p− 1]|A), the restriction of R to A.
We define the following predicates on Rp (R ∈ Rp, A set):

domA(R) ⇔ dom(R) = A R has domain A(5.18)

bndA(R) ⇔ ∀ r ∈ p : R[r](dom(R))/p ⊆ A R is A-bounded(5.19)

closed(R) ⇔ bnddom(R)(R) R is closed(5.20)

integral(R)⇔ dom(R) ⊆ Zp ∧ R[r]((r + pZp) ∩ dom(R)) ⊆ Zp R is integral(5.21)

For any closed p-fibred rational function R and for any D ∈ S(bndp,fin) we define

RD : dom(R)→ Qp(5.22)

x 7→

{
x if |D| = 0
R[D[|D|−1]](RD[|D|−1](x))

p if |D| > 0

and for any D ∈ S(bndp) we callSD(R) :=
((

RD[k](n)
)
k∈|D|

)
n∈dom(R)

∈ S(domdom(R), len|D|+1)

the R-sequence table with respect to D. For n ∈ dom(R) the R-sequence of n with respect to D is
given by the SD(R)-sequence of n.
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We define the following additional predicates on Rp (R ∈ Rp, A ⊆ Qp, D ⊆ N0 ∪ {−∞}):
polyA,D(R) ⇔ domQp(R) R is A-polynomial with degree in D or, if D = {d},(5.23)

∀ r ∈ p : R[r](x) ∈ A[x] R is A-polynomial of degree d

deg(R[r](x)) ∈ D
polyA(R) ⇔ polyA,N0∪{−∞}(R) R is A-polynomial(5.24)

poly(R) ⇔ polyQp,N0∪{−∞}(R) R is polynomial(5.25)

lin-polyA(R)⇔ polyA,{−∞,0,1}(R) R is A-linear-polynomial(5.26)

lin-poly(R) ⇔ polyQp,{−∞,0,1}(R) R is linear-polynomial(5.27)

Furthermore, we establish a relation between Rp(integral) and Fp by the bijection:

int : Rp(integral)→ Fp(5.28)

R 7→ (R[0] : dom(R)→ Zp, . . . ,R[p− 1] : dom(R)→ Zp)

i.e. “int” changes the codomains of all R[r], r ∈ p, from Qp to Zp. Note that we cannot simply
identify elements of Rp(integral) and Fp by int since this would introduce ambiguities for the
predicates “bndA” and “closed” which are defined differently for integral p-fibred rational functions
and p-fibred functions and do not coincide in general.

The essential difference between p-fibred functions and p-fibred rational functions lies in the way
they are considered to be functions on their respective domains (cf. Eqn. (2.23) and Eqn. (5.22)).
While a p-fibred function F gets the information on which of the functions F[0], . . . ,F[p−1] to apply
to some n ∈ dom(F) from the residue class of n modulo p, a p-fibred rational function gets this
information from the supplied “p-digit sequence” D. This difference also influences the definitions
of the respective “bndA” and “closed” predicates. In both cases, the purpose of the “closed”
predicate is to guarantee that application of a p-fibred function or p-fibred rational function in the
sense of Eqn. (2.23) or Eqn. (5.22) respectively, yields elements of the domain again, rendering
iterative application possible. Whenever a closed p-fibred rational function R “extends” a closed
p-fibred function F in weak canonical form (which will be the main purpose of p-fibred rational
functions), the different ways of applying them as functions coincide, however, if the supplied
p-digit sequence D is the F-digit expansion of the argument n, as the following lemma shows.

Lemma 5.8. Let 2 ≤ p ∈ N, R ∈ Rp(closed) such that integral(R|Zp∩dom(R)) and such that
F := int(R|Zp∩dom(R)) ∈ Fp(closed,w-canf). Furthermore, let n ∈ Zp ∩ dom(R), D := D(F)[n],
and k ∈ N0. Then,

Fk(n) = RD[k](n).(5.29)

In particular: S(F)[n] = SD(R)[n].

As an example consider the 2-fibred rational function R := (x, 3x + 1) ∈ R2(domQ2
, closed) and

the corresponding 2-fibred function F := int(R|Zp) ∈ F2(domZ2
, closed,w-canf) (note that ev-

ery p-tuple of polynomials in Zp[x] may be regarded as an element of both Rp(domQp , closed)
and Fp(domZp , closed), as the restriction to Zp of every p-fibred rational function defined by
polynomials in Zp[x] is always integral). Then, S(F)[17] = (17, 26, 13, 20, 10, 5, 8, 4) · (2, 1)∞

and D := D(F)[17] = (1, 0, 1, 0, 0, 1, 0, 0) · (0, 1)∞. Furthermore, F6(17) = 8 = RD[6](17) and
SD(R)[17] = (17, 26, 13, 20, 10, 5, 8, 4) · (2, 1)∞.

Proof of Lemma 5.8. We prove the statement by induction on k. If k = 0, then

F0(n) = n = R()(n) = RD[0](n).(5.30)

Now we assume Fk(n) = RD[k](n) and compute

Fk+1(n) = F(Fk(n)) =
F[Fk(n)%p](Fk(n))

p
(⇐ w-canf(F))(5.31)

(Fk(n) ∈ Zp) =
R[Fk(n)%p](Fk(n))

p
=

R[D[k]](RD[k](n))

p
= RD[k+1](n).(5.32)
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�

The above lemma is basically “built into the DNA” of p-fibred rational functions: the way a p-fibred
rational function is applied as a regular function is defined in the very way that would make the
lemma true. However, under additional assumptions (namely that F has the block property and
that for all r ∈ p the only elements of Qp that are mapped into pZp by R[r] are those in r+ pZp),
a much stronger version of the above lemma can be proven that is not built in by design. Before
we state the new lemma, we reconsider the above example which happens to satisfy the additional
assumptions: if R := (x, 3x + 1) ∈ R2(domQ2

, closed) and F := int(R|Zp) ∈ F2(domZ2
,w-canf)

then block(F) and R[r](Q2 \ (r+ 2Z2))∩ 2Z2 = ∅ for all r ∈ {0, 1}. Now, if n is any 2-adic integer,
say n := 17, and D := D(F)[n][k] is the initial part of length k ∈ N0 of the F-digit expansion
of n, say k = 6 and hence D = (1, 0, 1, 0, 0, 1), we know from the above lemma that RD[n], the
result of applying the functions x

2 and 3x+1
2 iteratively to n in the order given by D, is equal to

Fk(n), which is 8 in our case. In principle, the order given by D might not be the only one that
would result in 17 being mapped to 8: could there be another E ∈ S(bnd2,fin) such that RE [n] is

also equal to Fk(n), i.e. RE [17] = 8? The answer, which is “no”, is given by the following lemma,
which basically states that if the mentioned additional assumptions hold, the only way a p-adic
integer n can be mapped to another p-adic integer RD(n) by RD, is that RD(n) is contained in
the F-sequence of n, say the entry with index k ∈ N0, and D is equal to the initial part of length
k of the F-digit expansion of n. Before we state the lemma, we define the following predicate on
the set (Qp)A of all mappings from A to Qp, where 2 ≤ p ∈ N and A ⊆ Qp (f ∈ (Qp)A, r ∈ p):

avoidp,r(f)⇔ f((Qp \ (r + pZp)) ∩A) ∩ pZp = ∅ f is (p, r)-avoiding(5.33)

Note that if r + pZp ⊆ A, f(r + pZp) ⊆ pZp, and suitp,r(f) (e.g. if f |Zp is the entry with
index r of a p-adic system in weak canonical form, cf. Theorem 4.1 (2)), then f(r + pZp) = pZp
by Lemma 4.5 (2). In this case the condition for f to be (p, r)-avoiding can also be written as
f((Qp \ (r+ pZp))∩A)∩ f(r+ pZp) = ∅ or even as f(Qp \ (r+ pZp))∩ f(r+ pZp) = ∅ if A = Qp.
Additionally, we define the following predicate on Rp (R ∈ Rp):

avoid(R)⇔ ∀ r ∈ p : avoidp,r(R[r]) R is avoiding(5.34)

A p-fibred function is said to be avoiding if the correspondig p-fibred rational function is avoiding.
Using the new predicates we now formulate the lemma.

Lemma 5.9. Let 2 ≤ p ∈ N and R ∈ Rp(closed, avoid(R)) with Zp ⊆ dom(R) such that

integral(R|Zp), and F := int(R|Zp) ∈ Fp(w-canf). Furthermore, let n ∈ Zp, k ∈ N0, and D ∈
S(bndp, lenk) such that RD(n) ∈ Zp. Then, S(F)[n][k] = SD(R)[n] and D(F)[n][k] = D. In

particular. Fk(n) = RD(n).

Proof. Let m be the unique element of Zp such that D(F)[m] = D ·D(F)[RD(n)] (cf. Lemma 3.11).
Then,

D(F)[Fk(m)] = D(F)[m][k,∞] = D(F)[RD(n)](5.35)

and hence

Fk(m) = RD(n)(5.36)

by Lemma 3.9. Also,

D(F)[m][k] = D.(5.37)

We claim that S(F)[m][k − `] = SD(R)[n][k − `] for all ` ∈ k (which in particular implies that
m = n) and proceed by induction on `. If ` = 0, then

S(F)[m][k − `] = S(F)[m][k] = Fk(m) = RD(n) = SD(R)[n][k] = SD(R)[n][k − `].(5.38)
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Now assume that S(F)[m][k − `] = SD(R)[n][k − `] for some ` ∈ k. Then,

R[D[k − (`+ 1)]](SD(R)[n][k − (`+ 1)]) = R[D[k − (`+ 1)]](RD[k−(`+1)(n))(5.39)

= pRD[k−`](n)(5.40)

= pSD(R)[n][k − `](5.41)

= pS(F)[m][k − `] ∈ pZp.(5.42)

Thus, it follows from R[D[k − (`+ 1)]](Qp \ (D[k − (`+ 1)] + pZp)) ∩ pZp = ∅ that

SD(R)[n][k − (`+ 1)] ∈ D[k − (`+ 1)] + pZp.(5.43)

In addition,

S(F)[m][k − (`+ 1)]%p = D(F)[m][k − (`+ 1)] = D(F)[m][k][k − (`+ 1)] = D[k − (`+ 1)](5.44)

and hence

S(F)[m][k − (`+ 1)] ∈ D[k − (`+ 1)] + pZp.(5.45)

But then,

F[D[k − (`+ 1)]](SD(R)[n][k − (`+ 1)]) = R[D[k − (`+ 1)]](SD(R)[n][k − (`+ 1)])(5.46)

= pS(F)[m][k − `](5.47)

= pFk−`(m)(5.48)

= pF(Fk−(`+1)(m))(5.49)

= pF(S(F)[m][k − (`+ 1)])(5.50)

= F[D[k − (`+ 1)]](S(F)[m][k − (`+ 1)])(5.51)

and hence Theorem 4.1 (2) and Lemma 4.5 (1) imply that

S(F)[m][k − (`+ 1)] = SD(R)[n][k − (`+ 1)].(5.52)

�

One could assume that if the entries of R are polynomials, the assumptions of the lemma (i.e.
that R is avoiding) could be loosened. The following examples show that this is not the case.

Example 5.10.

• Let R := (2x2−5x+2, x+3) ∈ R2(domQ2 , closed) and F := int(R|Zp) ∈ F2(domZ2 ,w-canf,block).

Then, S(1,0)(R)[−2] = (−2, 12 , 0), but S(F)[−2][2] = (−2, 10, 76) and D(F)[−2][2] = (0, 0) (note:

S(F)[1][2] = (1, 2, 0) and D(F)[1][2] = (1, 0)).
• Let R := (x2 + x, x2 − x) ∈ R2(domQ2 , closed) and F := int(R|Zp) ∈ F2(domZ2 ,w-canf,block).

Then, S(0,1)(R)[1] = (1, 1, 0), but S(F)[1][2] = (1, 0, 0) and D(F)[1][2] = (1, 0). Therefore, even
for polynomials the condition R[r](Qp \ (r + pZp)) ∩ pZp = ∅ in Lemma 5.9 is necessary and
cannot even be reduced to R[r](Qp \ Zp) ∩ pZp = ∅.

Using the above lemma we are able to prove the promised generalization of Theorem 5.2 which
is a further generalization of Hensel’s Lemma.

Theorem 5.11. Let 2 ≤ p ∈ N and R ∈ Rp(closed, avoid(R)) with Zp ⊆ dom(R) such that

integral(R|Zp), and F := int(R|Zp) ∈ Fp(w-canf). Furthermore, let D ∈ S(bndp, lenN). Then, RD

has a unique fixed point in Zp.

A comparison of the assumptions of Theorem 5.2 and Theorem 5.11 shows that the latter is
not a pure generalization of the first, as the p-fibred rational function R in Theorem 5.11 is
required to be avoiding, whereas the function f in Theorem 5.2 is not required to be (p, r)-avoiding.
However, if this is the case, the unique root of Theorem 5.2 corresponds to the unique fixed point
in Theorem 5.11 if |D| = 1 (cf. Lemma 5.3). What Theorem 5.11 generalizes is thus the length of
D.
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Proof of Theorem 5.11. Let k := |D| and n be the unique element of Zp such that D(F)[n] = D∞

(cf. Lemma 3.11). Then, RD(n) = Fk(n) by Lemma 5.8. In addition,

D(F)[Fk(n)] = D(F)[n][k,∞] = D∞[k,∞] = D∞ = D(F)[n](5.53)

and hence Fk(n) = n by Lemma 3.9. Therefore, n is a fixed point of RD.
If m ∈ Zp is a fixed point of RD, then RD(m) = m ∈ Zp and Lemma 5.9 implies that

S(F)[m][k] = SD(R)[m] and D(F)[m][k] = D. In particular, Fk(m) = RD(m) = m and there-
fore D(F)[m] = D∞. But then Lemma 3.9 implies that m = n. �

Just as Theorem 4.8 characterizes polynomials in Zp[x] that are (p, r)-suitable (i.e. suitable
to be the building blocks of p-adic systems), we will now try to characterize polynomials that
are (p, r)-avoiding (i.e. suitable to be the building blocks of avoiding p-fibred rational functions).
For this purpose we need an analogue of the p-adic valuation νp for the case where p is not a
prime. These and other technicalities of p-adic numbers are discussed in the appendix. Using the
definitions and facts presented there, we are able to characterize (p, r)-avoiding polynomials.

Theorem 5.12. Let 2 ≤ p ∈ N, f =
∑d
i=0 aix

i ∈ Zp[x] (note that for the whole theorem we define
00 := 1 and assume d = 0, a0 = 0 if f = 0), and r ∈ p. Furthermore, let s ∈ N, q1, . . . , qs ∈ P the
distinct prime factors of p, and for all q ∈ {q1, . . . , qs} let tq ∈ d+ 1 and iq,1, . . . , iq,tq ∈ d be the
longest possible strictly increasing sequence of indices satisfying νq(aiq,j ) 6= ∞ for all j ∈ J1, tqK.
We set

K := max

({
νq(aiq,j+1

)− νq(aiq,j ) + iq,j+1(νq(p)− 1)

(iq,j+1 − iq,j)νq(p)

∣∣∣∣ q ∈ {q1, . . . , qs} ∧ j ∈ J1, tq − 1K
}
∪

(5.54)

{
νq(aiq,tq )− νq(p) + iq,tq (νq(p)− 1)

iq,tqνq(p)

∣∣∣∣ q ∈ {q1, . . . , qs} ∧ tq ≥ 1 ∧ iq,tq ≥ 1

}
∪ {1}

)
.

Then,

W := (p \ {r}) ∪
{
a/pk | k ∈ J1,KK ∧ a ∈ pdk+1

}
(5.55)

is a finite witness set for f being (p, r)-avoiding, i.e. avoidp,r(f) if and only if f(W ) ∩ pZp = ∅.

Proof. We need to show

∃ n ∈ Qp \ (r + pZp) : f(n) ∈ pZp ⇒ ∃ w ∈W : f(w) ∈ pZp.(5.56)

Clearly, if f(n) ∈ pZp for some n ∈ Zp \ (r + pZp), then w = n%p ∈ W and f(w) ∈ pZp. We are
thus left to show that

∃ n ∈ Qp \ Zp : f(n) ∈ pZp ⇒ ∃ w ∈W : f(w) ∈ pZp.(5.57)

For that let n ∈ Qp \ Zp, ` := −νp(n) ∈ N, and m := np` ∈ Zp and assume that f(n) ∈ pZp.
Then,

f(n) = f(m/p`) =

d∑
i=0

ai
(
m/p`

)i
=

d∑
i=0

aim
i/pi` = 1/pd`

d∑
i=0

aim
ip(d−i)`(5.58)

and thus

f(n)pd` =

d∑
i=0

aim
ip(d−i)` ∈ pd`+1Zp.(5.59)

We may thus reformulate our goal as

∃ v ∈ Qp \ Zp : −νp(v) ≤ K ∧ f(v) ∈ pZp,(5.60)

because for any such v it follows analogously that

f(v)pdk =

d∑
i=0

aiu
ip(d−i)k ∈ pdk+1Zp,(5.61)



AN INTRODUCTION TO p-ADIC SYSTEMS 47

where k := −νp(v) and u := vpk, and w := (u%pdk+1)/pk ∈ W thus satisfies f(w) ∈ pZp. To
prove this new goal we distinguish three cases:

Case 1: ∃ q ∈ {q1, . . . , qs} : tq = 0.
Let v := ϕ−1p ((0, . . . , 0, 1/p, 0, . . . , 0)) ∈ Qp \ Zp where the “1/p” is at the j-th position if q = qj .
Then k = 1 ≤ K and f(v) = 0 ∈ pZp.

Case 2: ∀ q ∈ {q1, . . . , qs} : tq ≥ 1
∀ q ∈ {q1, . . . , qs} : νq(m) 6=∞⇒ iq,tq = 0.

In this case as a result we get

νq

(
aim

ip(d−i)`
)

= νq(ai) + iνq(m) + (d− i)`νq(p) =∞(5.62)

for all q ∈ {q1, . . . , qs} and i ∈ J1, dK, and hence f(mpc) = a0 ∈ pZp for all c ∈ Z. Setting v := m/p
thus implies k = 1 ≤ K and f(v) ∈ pZp.

Case 3: ∀ q ∈ {q1, . . . , qs} : tq ≥ 1
∃ q ∈ {q1, . . . , qs} : νq(m) 6=∞∧ iq,tq ≥ 1.

We may assume without loss of generality that there is no a ∈ Zp \ (r+pZp) such that f(a) ∈ pZp,
because we already treated this case at the beginning of the proof. But then it follows that

∃ q ∈ {q1, . . . , qs} : νq(m) < `νq(p) ∧ iq,tq ≥ 1,(5.63)

because otherwise we could find an a ∈ Zp \ (r + pZp) with f(a) ∈ pZp in the following way: set
b := ϕ−1p ((b1, . . . , bs)) and c := ϕ−1p ((1 − b1, . . . , 1 − bs)) with bj = (iqj ,tqj = 0 ? 0, 1) for all

j ∈ J1, sK. Then c 6= 0 (otherwise νq(m) ≥ `νq(p) ≥ νq(p) for all q in {q1, . . . , qs}, hence m ∈ pZp
which is a contradiction), bn and bn + c are in Zp; they are not congruent modulo p, and both
satisfy f(bn) = f(bn + c) = f(n) ∈ pZp. Thus a = bn or a = bn + c contradicts our assumption
that no such a exists.

Now let v := bn ∈ Qp \ Zp, k := −νp(v), and u := vpk. Then f(v) = f(n) ∈ pZp and
we claim that k ≤ K which would complete the proof. Assume to the contrary that k > K and
let q ∈ {q1, . . . , qs} such that νq(u) ∈ νq(p) (such a q exists because νp(u) = 0). Then iq,tq ≥ 1

(otherwise νq(u) =∞ by u = bnpk and by the definition of b) and

νq

(
aiu

ip(d−i)k
)

= νq(ai) + iνq(k) + (d− i)kνq(p)(5.64)

∈ νq(ai) + (d− i)kνq(p) + iνq(p)(5.65)

for all i ∈ d. By assumption we have

νq(aiq,j+1
)− νq(aiq,j ) + iq,j+1(νq(p)− 1)

(iq,j+1 − iq,j)νq(p)
≤ K < k(5.66)

or equivalently

νq(aiq,j+1) + (d− iq,j+1)kνq(p) + iq,j+1(νq(p)− 1) < νq(aiq,j ) + (d− iq,j)kνq(p)(5.67)

for all j ∈ J1, tq − 1K and hence

νq

(
aiq,j1u

iq,j1p(d−iq,j1 )k
)
6= νq

(
aiq,j2u

iq,j2p(d−iq,j2 )k
)

(5.68)

for all distinct j1, j2 ∈ J1, tqK. Furthermore, we have, again by assumption and by tq ≥ 1 and
iq,tq ≥ 1,

νq(aiq,tq )− νq(p) + iq,tq (νq(p)− 1)

iq,tqνq(p)
≤ K < k(5.69)

or equivalently

νq(aiq,tq ) + (d− iq,tq )kνq(p) + iq,tq (νq(p)− 1) < (dk + 1)νq(p).(5.70)
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Thus we get

νq
(
f(v)pdk

)
= inf

{
νq

(
aiq,ju

iq,jp(d−iq,j)k
) ∣∣∣ j ∈ J1, tqK

}
(5.71)

= νq

(
aiq,tqu

iq,tq p(d−iq,tq )k
)

(5.72)

≤ νq(aiq,tq ) + (d− iq,tq )kνq(p) + iq,tq (νq(p)− 1)(5.73)

< (dk + 1)νq(p)(5.74)

which contradicts f(v)pdk ∈ pdk+1Zp. �

As an example consider the following polynomials: f0(x) := 7x3−4x2+x−6, f1(x) := 3x7−x+1,
f2(x) := 5x4 + 4x− 1. By Theorem 5.12 all of the fr are (3, r)-avoiding, and by Theorem 4.8 they
are (3, r)-suitable. Thus R := (f0, f1, f2) ∈ R3 is avoiding by definition and F := int(R|Zp) =
(f0, f1, f2) ∈ F3 has the block property by Theorem 4.1 (2). In addition, R is clearly closed and
F is in weak canonical form. Thus the conditions of Theorem 5.11 are met and RD has a unique
fixed point in Zp for every D ∈ S(bndp, lenN). Stripping off the machinery of p-fibred functions this
implies that for every polynomial of the form gr1 ◦ . . .◦gr` , where gr := fr/3 for every r ∈ {0, 1, 2},
` ∈ N, and r1, . . . , r` ∈ {0, 1, 2}, there is a unique n ∈ Zp satisfying gr1 ◦ . . . ◦ gr`(n) = n.

6. Periodic and ultimately periodic digit expansions

One problem about p-adic systems we are particularly interested in concerns the characterization
of the sets of all p-adic integers which have periodic or ultimately periodic digit expansions with
respect to a given p-adic system. It is a natural generalization of the very specific question asked
in the Collatz conjecture which claims that all natural numbers have periodic digit expansions
with period (1, 0). If one could characterize the set of all 2-adic integers having ultimately periodic
FC-digit expansions, one would probably find what numerous experiments suggest, namely that
it is exactly the set Q ∩ Z2 of rational numbers with odd denominators. By Corollary 3.10 this
would automatically prove that orbits of natural numbers under FC cannot diverge, which would
be a significant step in proving the Collatz conjecture.

For 2 ≤ p ∈ N, F ∈ Fp, and n ∈ Zp we say that n is a periodic, ultimately periodic, or aperiodic
point of F if D(F)[n] is periodic, ultimately periodic, or aperiodic, respectively. Note that by
Corollary 3.10 we could replace D(F)[n] by S(F)[n] to get equivalent definitions. We define the sets

PerP(F) := {n ∈ Zp | per(D(F)[n])}(6.1)

UPerP(F) := {n ∈ Zp | uper(D(F)[n])}(6.2)

APerP(F) := {n ∈ Zp | aper(D(F)[n])}(6.3)

of periodic, ultimately periodic, and aperiodic points of F. Furthermore, for every logical expression
E in the three unknown sets PerP, UPerP, and APerP we define the following predicate on Fp
(2 ≤ p ∈ N, F ∈ Fp):

[E](F)⇔ E[PerP→ PerP(F),UPerP→ UPerP(F),APerP→ APerP(F)] F satisfies E(6.4)

where E[PerP → PerP(F),UPerP → UPerP(F),APerP → APerP(F)] is the logical expression
obtained by substituting PerP with PerP(F), UPerP with UPerP(F), and APerP with APerP(F)
in E, e.g. [UPerP = Q ∩ Z2](FC)⇔ UPerP(FC) = Q ∩ Z2.
Additionally, we define the following predicates on Fp (2 ≤ p ∈ N, F ∈ Fp, A set):

per-onA(F) ⇔ [PerP = A](F) F is periodic on A(6.5)

uper-onA(F)⇔ [UPerP = A](F) F is ultimately periodic on A(6.6)

aper-onA(F) ⇔ [APerP = A](F) F is aperiodic on A(6.7)

Using πF,G we can characterize when two p-adic systems F and G are periodic, ultimately
periodic, or aperiodic on the same sets.
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Lemma 6.1. Let 2 ≤ p ∈ N, F,G ∈ Fp, B ⊆ S(bndp,¬fin), AF := {n ∈ Zp | D(F)[n] ∈ B}, and
AG := {n ∈ Zp | D(G)[n] ∈ B}. Then,

AF = AG ⇔ πF,G(AF) = AF.(6.8)

In particular,

(1) PerP(F) = PerP(G)⇔ πF,G(PerP(F)) = PerP(F)
(2) UPerP(F) = UPerP(G)⇔ πF,G(UPerP(F)) = UPerP(F)
(3) APerP(F) = APerP(G)⇔ πF,G(APerP(F)) = APerP(F).

Proof. First we observe that AF = ψ−1F (B) and AG = ψ−1G (B) by definition of ψF and ψG. Since
ψF and ψG are bijective it follows that

AF = AG ⇔ ψG(AF) = ψG(AG) = ψG(ψ−1G (B)) = B = ψF(ψ−1F (B)) = ψF(AF)(6.9)

⇔ AF = ψ−1G (ψG(AF)) = ψ−1G (ψF(AF)) = πF,G(AF).(6.10)

The ”In particular” part follows directly if one sets B :=
{
S ∈ S(bndp,¬fin) | per(S)

}
, B :={

S ∈ S(bndp,¬fin) | uper(S)
}

, or B :=
{
S ∈ S(bndp,¬fin) | aper(S)

}
respectively. �

In the upcoming section we will prove direct formulas for πF,G(n), n ∈ Zp for several combinations
of p-adic systems F and G. For example, Theorem 7.14 implies that π(x,3x+1),(x,3x+c)(n) = cn for all
odd integers c. Since the mapping n 7→ cn maps Q∩Z2 to itself, it follows from the “In particular”
part of Lemma 6.1 that (x, 3x + 1) is ultimately periodic on Q ∩ Z2 if and only if (x, 3x + c) is
ultimately periodic on Q ∩ Z2. It thus suffices to prove that (x, 3x + c) is ultimately periodic on
Q ∩ Z2 for any c to automatically prove it for all c. Furthermore, if a 2-adic system G could be
found which can be proven to be ultimately periodic on Q ∩ Z2 and for which π(x,3x+1),G(n) can
be directly computed by a formula, such that π(x,3x+1),G(Q ∩ Z2) = Q ∩ Z2 can be demonstrated,
it would again follow from the “In particular” part of Lemma 6.1 that (x, 3x + 1) is ultimately
periodic on Q ∩ Z2. Unfortunately, such a G could not be found so far, but further investigations
in this direction are made in the upcoming section.

Contractive and expansive p-adic systems. In the special cases where a p-adic system F is
either contractive or expansive we can easily characterize PerP(F) ∩Q and UPerP(F) ∩Q respec-
tively.
We define the following predicates on Fp (2 ≤ p ∈ N, F ∈ Fp):

contr(F) ⇔ F(Q ∩ Zp) ⊆ Q ∩ Zp F is contractive(6.11)

∃ 0 ≤M ∈ R : ∀ n ∈ Q ∩ Zp : |n| > M ⇒ |F(n)| < |n|
exp(F) ⇔ F(Q ∩ Zp) ⊆ Q ∩ Zp F is expansive(6.12)

∃ 0 ≤M ∈ R : ∀ n ∈ Q ∩ Zp : |n| > M ⇒ |F(n)| > |n|
mix(F) ⇔ F(Q ∩ Zp) ⊆ Q ∩ Zp F is of mixed type(6.13)

¬contr(F) ∧ ¬exp(F)

d-contr(F)⇔ ∀ a/b ∈ Q ∩ Zp with (a, b) ∈ Z× N coprime : F contracts denominators(6.14)

∃ (c, d) ∈ Z× N coprime : F(a/b) = c/d ∧ d ≤ b
d-exp(F) ⇔ ∀ a/b ∈ Q ∩ Zp with (a, b) ∈ Z× N coprime : F expands denominators(6.15)

∃ (c, d) ∈ Z× N coprime : F(a/b) = c/d ∧ d > b

d-mix(F) ⇔ F(Q ∩ Zp) ⊆ Q ∩ Zp F mixes denominators(6.16)

¬d-contr(F) ∧ ¬d-exp(F)

Note that d-contr(F) and d-exp(F) both imply F(Q ∩ Zp) ⊆ Q ∩ Zp.
If a p-fibred function is contractive or expansive, this has the following consequences for periodic

and ultimately periodic digit expansions.

Lemma 6.2. Let 2 ≤ p ∈ N, F ∈ Fp, 0 ≤ M ∈ R as in the definition above, and A :=
{n ∈ Q ∩ Zp | |n| ≤M}. Then,
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(1) contr(F) ⇒ PerP(F) ∩Q ⊆
⋃∞
k=0 Fk(A)

In particular: Every period of F that contains a rational number
also contains an element of A

(2) contr(F) ∧ d-contr(F) ⇒ UPerP(F) ∩Q = Q ∩ Zp
In particular: UPerP(F) ⊆ Q⇒ uper-onQ∩Zp(F)

(3) exp(F) ⇒ UPerP(F) ∩Q ⊆ A
In particular: ¬uper-onQ∩Zp(F)

(4) d-exp(F) ⇒ UPerP(F) ∩Q = ∅
In particular: ¬uper-onQ∩Zp(F).

Proof.
(1): Let n ∈ PerP(F) ∩ Q. Then,

∣∣F`+1(n)
∣∣ ≥ ∣∣F`(n)

∣∣ for some ` ∈ N0 (otherwise n cannot be

a periodic point of F) and thus
∣∣F`(n)

∣∣ ≤ M by definition of M which proves the “In particular”

part. Also, n = Fk(F`(n)) for some k ∈ N0 and thus we get n ∈
⋃∞
k=0 Fk(A) as claimed.

(2): Let n = a/b ∈ Q ∩ Zp with (a, b) ∈ Z× N coprime and

B := {c/d ∈ Q | (c, d) ∈ Z× N ∧ d ≤ b} .(6.17)

Then, contr(F) and d-contr(F) imply that
{

Fk(n) | k ∈ N0

}
is contained in

⋃∞
k=0 Fk (A ∩B) which

is a finite set. Thus n is an ultimately periodic point of F.
(3) and (4) follow directly from the definitions. �

An important class of p-adic systems that are expansive (and thus cannot be ultimately periodic
on Q∩Zp) is given by (Q∩Zp)-polynomial p-adic systems where each polynomial is either of degree
2 or higher or has a linear coefficient greater than p in absolute value.

Theorem 6.3. Let 2 ≤ p ∈ N and F,G ∈ Fp(polyQ∩Zp) such that F[r] either is of degree 2 or

higher or F[r] = ar + brx with |br| > p for all r ∈ p. Then,

(1) exp(F)
In particular: ¬uper-onQ∩Zp(F)

(2) contr(G)⇒ lin-poly(G).

Note that by Theorem 4.1 (2) and Theorem 4.8 (3) we get Fp(polyQ∩Zp) = Fp(polyQ∩Zp,J1,∞K).

Proof of Theorem 6.3.
(1): For every r ∈ p, F[r] is a polynomial function (on r+pZp) with coefficients in Q∩Zp. Thus
we clearly have F(Q ∩ Zp) ⊆ Q ∩ Zp and for all r ∈ p there is an 0 ≤Mr ∈ R such that

|F[r](n)− F[r](n)%p| > p |n|(6.18)

for all n ∈ Q ∩ (r + pZp) with |n| > Mr (note that F[r](n)%p ∈ p) by the additional assumptions.
Let M := max {M0, . . . ,Mp−1}, n ∈ Q ∩ Zp with |n| > M , and r := n%p. Then,

|F(n)| =
∣∣∣∣F[r](n)− F[r](n)%p

p

∣∣∣∣ > |n|(6.19)

which implies that F is expansive.
(2): Clearly, if G[r] is of degree 2 or higher for at least one r ∈ p, then G cannot be contractive.

�

7. Linear-polynomial p-adic systems and the question of ultimate periodicity

In the following we investigate linear-polynomial p-adic systems such as Fp = (x)p (standard
base p) or FC = (x, 3x+ 1) (Collatz).
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Basic facts. We begin by applying results from previous sections to characterize linear polynomials
with special properties.

Lemma 7.1. Let 2 ≤ p ∈ N, r ∈ p, f = a+ bx ∈ Zp[x], and k ∈ N0. Then,

(1) w-suitp,r(f)
(2) suitp,r(f)⇔ gcd (p, b%p) = 1
(3) suitp,r(f)⇒ (avoidp,r(f)⇔ f(r) ∈ pZp).

Note that by (3) and Theorem 4.1 (2) it follows that every linear-polynomial p-adic system in weak
canonical form is avoiding when interpreted as the p-fibred rational function defined by the same
polynomials.

Proof of Lemma 7.1. (1) and (2) follow directly from Theorem 4.8. For the proof of (3) we assume
suitp,r(f) which is equivalent to gcd (p, b%p) = 1 by (2). Thus, f(Qp\Zp)∩pZp = ∅ and f(p)%p = p.
But then

avoidp,r(f)⇔ f(p \ {r}) ∩ pZp = ∅ ⇔ f(r) ∈ pZp(7.1)

by Theorem 5.12. �

A formula for RD. Next we give a direct formula for RD if R is a linear-polynomial p-fibred
rational function. Note that for the special case R = (x, 3x + 1) this formula can be found in
many publications on the original Collatz conjecture, such as [11, 48, 5, 6]. For any sequence
S and any a we denote by pos (S, a) the increasing sequence of all indices i ∈ |S| for which
S[i] = a and set cnt (S, a) := |pos (S, a)|. Furthermore, for F := (a0 + b0x, . . . , ap−1 + bp−1x) ∈
Fp(lin-poly) ∪Rp(lin-poly) and D ∈ S(bndp,fin) we define

AF(D) :=

|D|−1∑
i=0

aD[i]p
i

|D|−1∏
j=i+1

bD[j](7.2)

BF(D) :=

|D|−1∏
i=0

bD[i].(7.3)

By collecting the “ai”s and “bi”s it follows that

AF(D) =

p−1∑
r=0

ar

cnt(D,r)−1∑
i=0

ppos(D,r)[i]
p−1∏
s=0

bcnt(D[pos(D,r)[i]+1,|D|−1],s)
s(7.4)

BF(D) =

p−1∏
r=0

bcnt(D,r)r .(7.5)

Theorem 7.2. Let 2 ≤ p ∈ N, R ∈ Rp(lin-poly), D ∈ S(bndp,fin), and n ∈ Qp. Then,

RD(n) =
AR(D) + nBR(D)

p|D|
.(7.6)

In particular: RD(x) ∈ Qp[x] is a linear polynomial.

Proof. Let a0, b0, . . . , ap−1, bp−1 ∈ Qp such that R = (a0 + b0x, . . . , ap−1 + bp−1x). We prove the
formula by induction on the length of D. If |D| = 0, then RD(n) = n as claimed. Now assume
that the formula is true for D and let E := D · (e) ∈ S(bndp,fin) where e ∈ p. We compute

RE(n) =
R[E[|E| − 1]]

(
RE[|E|−1](n)

)
p

=
R[e] (RD(n))

p
(7.7)

=

ae + be

n · |D|−1∏
i=0

bD[i] +

|D|−1∑
i=0

aD[i]p
i

|D|−1∏
j=i+1

bD[j]

 1

p|D|

 1

p
(7.8)
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=

aE[|E|−1] + bE[|E|−1]

n · |E|−2∏
i=0

bE[i] +

|E|−2∑
i=0

aE[i]p
i

|E|−2∏
j=i+1

bE[j]

 1

p|E|−1

 1

p
(7.9)

=

n · |E|−1∏
i=0

bE[i] + aE[|E|−1]p
|E|−1 +

|E|−2∑
i=0

aE[i]p
i

|E|−1∏
j=i+1

bE[j]

 1

p|E|
(7.10)

=

n · |E|−1∏
i=0

bE[i] +

|E|−1∑
i=0

aE[i]p
i

|E|−1∏
j=i+1

bE[j]

 1

p|E|
.(7.11)

�

Find the number that has a given expansion. Theorem 7.2 has several consequences, one
of them being that all ultimately periodic points of (Q ∩ Zp)-linear-polynomial p-adic systems are
rational numbers. This follows from a general formula for the unique p-adic integer that has a
given ultimately periodic digit expansion with respect to a given linear-polynomial p-adic system.

Corollary 7.3. Let 2 ≤ p ∈ N, F ∈ Fp(w-canf, lin-poly), D ∈ S(bndp,uper), and n the unique
element of Zp satisfying D(F)[n] = D (cf. Lemma 3.11). Then,

n =

(
AF(P (D))

p|P(D)| −BF(P (D))
p|I(D)| −AF(I (D))

)
1

BF(I (D))
.(7.12)

In particular,

PerP(F) =

{
AF(DP )

p|DP | −BF(DP )
| DP ∈ S(bndp,fin)

}
(7.13)

UPerP(F) =

{(
AF(DP )

p|DP | −BF(DP )
p|DI | −AF(DI)

)
1

BF(DI)
| DI , DP ∈ S(bndp,fin)

}
(7.14)

and if lin-polyQ∩Zp(F), then [UPerP ⊆ Q ∩ Zp](F).

Proof. Let a0, b0, . . . , ap−1, bp−1 ∈ Zp and R := (a0 +b0x, . . . , ap−1 +bp−1x) ∈ Rp(lin-poly). Then,
F = int(R|Zp) and thus

Fk(n) = RD[k](n)(7.15)

for all k ∈ N0 by Lemma 5.8. Furthermore, let m := F|I(D)|(n). Then, D(F)[m] = P (D)
∞

and
hence

Fk(m) = R(P(D)∞)[k](m)(7.16)

for all k ∈ N0, again by Lemma 5.8. Thus, Corollary 3.10 and Theorem 7.2 imply

m = F|I(D)|(n) = RD[|I(D)|](n) = RI(D)(n) =
AR(I (D)) + nBR(I (D))

p|I(D)|(7.17)

m = F|P(D)|(m) = R(P(D)∞)[|P(D)|](m) = RP(D)(m) =
AR(P (D)) +mBR(P (D))

p|P(D)| .(7.18)

Solving the second equation for m and plugging in the result into the first equation yields

m =
AF(P (D))

p|P(D)| −BF(P (D))
(7.19)

n =

(
AF(P (D))

p|P(D)| −BF(P (D))
p|I(D)| −AF(I (D))

)
1

BF(I (D))
.(7.20)
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The inclusion “⊆” in Eqn. (7.13) and Eqn. (7.14) of the “In particular” part follows directly
from what we just proved. For the other inclusion let DI , DP ∈ S(bndp,fin) and set

m :=
AF(DP )

p|DP | −BF(DP )
∈ Zp(7.21)

n :=

(
AF(DP )

p|DP | −BF(DP )
p|DI | −AF(DI)

)
1

BF(DI)
∈ Zp.(7.22)

Then RDI (n) = m ∈ Zp and RDP (m) = m ∈ Zp, and since R is avoiding (cf. the remark after

Lemma 7.1), we get F|DI |(n) = RDI (n) = m, and F|DP |(m) = RDP (m) = m by Lemma 5.9. Thus,
m ∈ PerP(F) and n ∈ UPerP(F).

Clearly, if lin-polyQ∩Zp(F), i.e. a0, b0, . . . , ap−1, bp−1 ∈ Q ∩ Zp, then

AF(I (D)), AF(P (D)), BF(I (D)), BF(P (D)) ∈ Q ∩ Zp(7.23)

and hence n ∈ Q ∩ Zp. �

Another consequence of Theorem 7.2 is a complete characterization of those p-adic integers whose
digit-expansions with respect to a given linear-polynomial p-adic system have a given beginning.

Corollary 7.4. Let 2 ≤ p ∈ N, F ∈ Fp(w-canf, lin-poly), D ∈ S(bndp,fin), and n the unique

element of p|D| satisfying D(F)[n][|D|] = D (cf. Lemma 3.5). Then,

n = (bAF(D)) %p|D|(7.24)

where b ∈ Z such that

p|D|a−
(
BF(D)%p|D|

)
b = 1(7.25)

for some a ∈ Z (find b with extended Euclidean algorithm). In particular,

{m ∈ Zp | D(F)[m][|D|] = D} = n+ p|D|Zp(7.26)

by block(F).

Proof. Let A := AF(D) and B := BF(D). If we interpret F as the p-fibred rational function
that is defined by the same polynomials as the p-adic system F, we have avoid(F) according to the
remark after Lemma 7.1. Thus, Lemma 5.9 and Theorem 7.2 imply that

D(F)[m][|D|] = D ⇔ A+mB

p|D|
= FD(m) ∈ Zp(7.27)

⇔ A+mB ∈ p|D|Zp(7.28)

⇔ A%p|D| +
(
m%p|D|

)(
B%p|D|

)
∈ p|D|Z(7.29)

⇔ ∃ a ∈ Z : A%p|D| +
(
m%p|D|

)(
B%p|D|

)
= ap|D|(7.30)

⇔ ∃ a ∈ Z : p|D|a−
(
B%p|D|

)(
m%p|D|

)
= A%p|D|(7.31)

for all m ∈ Zp. Since gcd
(
p|D|, B%p|D|

)
= 1 by Lemma 7.1 (2), the equation

p|D|a−
(
B%p|D|

)
b = 1(7.32)

has a solution a, b ∈ Z by Bézout’s Lemma. For any such a, b ∈ Z we get

p|D|a
(
A%p|D|

)
−
(
B%p|D|

)
b
(
A%p|D|

)
= A%p|D|(7.33)

⇔ p|D|a
(
A%p|D|

)
−
(
B%p|D|

)(
p|D|

b
(
A%p|D|

)
− (bA) %p|D|

p|D|
+ (bA) %p|D|

)
= A%p|D|(7.34)

⇔ p|D|C −
(
B%p|D|

)(
(bA) %p|D|

)
= A%p|D|(7.35)
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where

C := a
(
A%p|D|

)
−
(
B%p|D|

) b (A%p|D|
)
− (bA) %p|D|

p|D|
∈ Z.(7.36)

Thus,

D(F)[bA][|D|] = D(7.37)

and consequently n = (bA)%p|D|. �

Inverse problem: given a number and expansion, find a system. Corollary 7.3 allows to
compute the unique p-adic integer that has a given ultimately periodic F-digit expansion for a
given linear-polynomial p-adic system F in weak canonical form. In the other direction one might
try to find one or even all linear-polynomial p-adic systems for which a given p-adic integer has a
given ultimately periodic digit expansion. The characterization of these p-adic systems is given in
the following corollary which is another consequence of Theorem 7.2.

Corollary 7.5. Let 2 ≤ p ∈ N, D ∈ S(bndp,uper), r := D[0], n ∈ r + pZp, and F = (a0 +

b0x, . . . , ap−1 + bp−1x) ∈ Fp(w-canf, lin-poly). Furthermore, let

k := |I (D)|(7.38)

` := |P (D)|(7.39)

cs :=

cnt(I(D),s)−1∑
i=0

ppos(I(D),s)[i]

p−1∏
t=0

b
cnt(I(D)[pos(I(D),s)[i]+1,k−1],t)
t , s ∈ p(7.40)

ds :=

cnt(P(D),s)−1∑
i=0

ppos(P(D),s)[i]

p−1∏
t=0

b
cnt(P(D)[pos(P(D),s)[i]+1,`−1],t)
t , s ∈ p(7.41)

c := BF(I (D))(7.42)

d := BF(P (D)).(7.43)

If a0, . . . , ar−1, ar+1, . . . , ap−1, b0, . . . , bp−1 are fixed, then there is a unique choice for ar such that
D(F)[n] = D. This choice is given by

ar =

cn− ∑
s∈p\{r}

as

(
dsp

k

p` − d
− cs

)/(
drp

k

p` − d
− cr

)
.(7.44)

Proof. By rearranging the formula for n in Corollary 7.3 it follows that if ar can be chosen such
that D(F)[n] = D holds, ar must satisfy Eqn. (7.44). We are thus left to show that ar as given in
Eqn. (7.44) is an element of −rbr + pZp and thus defines a valid linear-polynomial p-adic system
in weak canonical form (within F). This would follow in particular if we could demonstrate that

gcd

(
p,

(
drp

k

p` − d
− cr

)
%p

)
= 1(7.45)

and

cn−
∑

s∈p\{r}

as

(
dsp

k

p` − d
− cs

)
∈ −rbr

(
drp

k

p` − d
− cr

)
+ pZp(7.46)

which is what we will do.
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We begin by showing Eqn. (7.45) and use the fact D[0] = r and Lemma 7.1 (2) to compute

gcd

(
p,

(
drp

k

p` − d
− cr

)
%p

)
(7.47)

= gcd

(
p,

(
k = 0 ?

dr
p` − d

: −cr
)

%p

)
(7.48)

= gcd

(
p,

(
k = 0 ?

∏p−1
t=0 b

cnt(P(D)[1,`−1],t)
t

p` −
∏p−1
t=0 b

cnt(P(D),t)
t

: −
p−1∏
t=0

b
cnt(I(D)[1,k−1],t)
t

)
%p

)
(7.49)

= 1.(7.50)

To show Eqn. (7.46) let m be the unique element of r + pZp satisfying D(G)[m] = D (cf.

Lemma 3.11) where G ∈ Fp(w-canf, lin-poly) is given by

G := (a0 + b0x, . . . , ar−1 + br−1x,−rbr + brx, ar+1 + br+1x, . . . , ap−1 + bp−1x).(7.51)

Then by Corollary 7.3 we get

m =
1

c

−rbr ( drp
k

p` − d
− cr

)
+

∑
s∈p\{r}

as

(
dsp

k

p` − d
− cs

)(7.52)

which impliescn− ∑
s∈p\{r}

as

(
dsp

k

p` − d
− cs

)%p =

cm− ∑
s∈p\{r}

as

(
dsp

k

p` − d
− cs

)%p(7.53)

=

(
−rbr

(
drp

k

p` − d
− cr

))
%p.(7.54)

�

The above corollary indeed characterizes all weak canonical linear-polynomial p-adic systems for
which a given p-adic integer n has a given ultimately periodic digit expansion D: simply pick all
coefficients at random apart from the constant coefficient of F[n%p] which is fixed uniquely by the
other coefficients and can be computed by the formula given in the corollary. A further corollary
of Theorem 7.2 which will answer a similar question is proven next.

Corollary 7.6. Let 2 ≤ p ∈ N, r ∈ p, D ∈ S(bndp,uper), and F = (a0 + b0x, . . . , ap−1 + bp−1x) ∈
Fp(w-canf, lin-poly). Furthermore, let k, `, c0, . . . , cp−1, d0, . . . , dp−1, c, d as in Corollary 7.5 and

K := (cnt (D, r) 6= 0 ? pos (D, r)[0] + 1 : −∞)(7.55)

A1 := (−rbr)%p(7.56)

B1 :=
1

c

A1

(
drp

k

p` − d
− cr

)
+

∑
s∈p\{r}

as

(
dsp

k

p` − d
− cs

)(7.57)

C1 :=

(
cnt (D, r) 6= 0 ?

1

cpK−1

(
drp

k

p` − d
− cr

)
: 1

)
(7.58)

A2 :=

(
cnt (D, r) 6= 0 ? A1 −

B1 −B1%pK

C1pK−1
: A1

)
(7.59)

B2 :=
(
cnt (D, r) 6= 0 ? B1%pK , B1

)
(7.60)

C2 :=
1

C1
.(7.61)

If a0, . . . , ar−1, ar+1, . . . , ap−1, b0, . . . , bp−1 are fixed, then
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(1)
{

(ar, n) ∈ (Zp)2 | D(F)[n] = D
}

=
{(
A1 +mp,B1 +mC1p

K
)
| m ∈ Zp

}
=
{(
A2 +mC2p,B2 +mpK

)
| m ∈ Zp

}
where A1, B1, C1, A2, B2, C2 ∈ Zp, A1 ∈ p, B2 ∈ pK if cnt (D, r) 6= 0, and
gcd (p, C1%p) = gcd (p, C2%p) = 1

(2) If lin-polyQ∩Zp(F) and K1, L1,K2, L2 are the denominators of B1, C1, A2, C2 respectively then,{
(ar, n) ∈ Z2 | D(F)[n] = D

}
6= ∅ ⇔ K1 | L1

⇔ K2 | L2 ∧B2 ∈ Z
In this case:{

(ar, n) ∈ Z2 | D(F)[n] = D
}

=
{(
A1 + (S1B1 +m)L1p,B1 + (S1B1 +m)L1C1p

K
)
| m ∈ Z

}
=
{(
A2 + (S2A2 +m)L2C2p,B2 + (S2A2 +m)L2p

K
)
| m ∈ Z

}
where S1, S2 ∈ Z such that
L1R1 − L1C1p

KS1 = 1
L2R2 − L2C2pS2 = 1
for some R1, R2 ∈ Z (find S1, S2 with extended Euclidean algorithm).

Proof.
(1): Clearly, A1, B1, A2, B2 ∈ Zp, A1 ∈ p, and B2 ∈ pK if cnt (D, r) 6= 0. In addition, if
cnt (D, r) = 0, then C1, C2 = 1 ∈ Zp and gcd (p, C1%p) = gcd (p, C2%p) = gcd (p, 1) = 1. If,
however, cnt (D, r) 6= 0 then either pos (D, r)[0] < |I (D)| or pos (D, r)[0] ≥ |I (D)|. In the first
case we get K − 1 = pos (D, r)[0] = pos (I (D), r)[0],

C1 =
1

cpK−1

(
drp

k

p` − d
− cr

)
(7.62)

=
p|I(D)|

ppos(D,r)[0]
dr

c(p` − d)
− 1

c

p−1∏
t=0

b
cnt(I(D)[pos(I(D),r)[0]+1,k−1],t)
t −(7.63)

1

c

cnt(I(D),r)−1∑
i=1

ppos(I(D),r)[i]

ppos(I(D),r)[0]

p−1∏
t=0

b
cnt(I(D)[pos(I(D),r)[i]+1,k−1],t)
t

∈ Zp(7.64)

and

gcd (p, C1%p) = gcd

(
p,

(
1

c

p−1∏
t=0

b
cnt(I(D)[pos(I(D),r)[0]+1,k−1],t)
t

)
%p

)
(7.65)

= 1(7.66)

by Lemma 7.1 (2). In the second case we get K − 1 = pos (D, r)[0] = |I (D)|+ pos (P (D), r)[0],

C1 =
1

cpK−1

(
drp

k

p` − d
− cr

)
(7.67)

=
1

c(p` − d)

p−1∏
t=0

b
cnt(P(D)[pos(P(D),r)[0]+1,`−1],t)
t +(7.68)

1

c(p` − d)

cnt(P(D),r)−1∑
i=1

ppos(P(D),r)[i]

ppos(P(D),r)[0]

p−1∏
t=0

b
cnt(P(D)[pos(P(D),r)[i]+1,`−1],t)
t

∈ Zp(7.69)

and

gcd (p, C1%p) = gcd

(
p,

(
1

c(p` − d)

p−1∏
t=0

b
cnt(P(D)[pos(P(D),r)[0]+1,`−1],t)
t

)
%p

)
(7.70)

= 1(7.71)
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again by Lemma 7.1 (2). We thus proved that, in any case, C1, C2 ∈ Zp and gcd (p, C1%p) =
gcd (p, C2%p) = 1.

If ar = A1+mp = (−rbr)%p+mp for some m ∈ Zp (which exactly covers all possible candidates
for ar for F to be in weak canonical form), then by Corollary 7.3 there is a unique n ∈ Zp satisfying
D(F)[n] = D which is given by

n =

(
AF(P (D))

p|P(D)| −BF(P (D))
p|I(D)| −AF(I (D))

)
1

BF(I (D))
(7.72)

=
1

c

p−1∑
r=0

ar

(
drp

k

p` − d
− cr

)
(7.73)

=
1

c

(A1 +mp)

(
drp

k

p` − d
− cr

)
+

∑
s∈p\{r}

as

(
dsp

k

p` − d
− cs

)(7.74)

= B1 +mp
1

c

(
drp

k

p` − d
− cr

)
(7.75)

= B1 +

(
cnt (D, r) 6= 0 ? mpK

1

cpK−1

(
drp

k

p` − d
− cr

)
: 0

)
(7.76)

= B1 +mC1p
K .(7.77)

Thus,
{

(ar, n) ∈ (Zp)2 | D(F)[n] = D
}

=
{(
A1 +mp,B1 +mC1p

K
)
| m ∈ Zp

}
.

If, however, ar = A2+mC2p for some m ∈ Zp (which again exactly covers all possible candidates
for ar for F to be in weak canonical form since gcd (p, C2%p) = 1), then again by Corollary 7.3
there is a unique n ∈ Zp satisfying D(F)[n] = D which is given by

n =
1

c

(A2 +mC2p)

(
drp

k

p` − d
− cr

)
+

∑
s∈p\{r}

as

(
dsp

k

p` − d
− cs

)(7.78)

= B1 −
1

c

(
cnt (D, r) 6= 0 ?

(
B1 −B1%pK

C1pK−1
− mp

C1

)(
C1cp

K−1) : 0

)
(7.79)

= B2 +mpK .(7.80)

Thus,
{

(ar, n) ∈ (Zp)2 | D(F)[n] = D
}

=
{(
A2 +mC2p,B2 +mpK

)
| m ∈ Zp

}
.

(2): First we observe that c0, . . . , cp−1, d0, . . . , dp−1, c, d, A1, B1, C1,K1, L1, A2, B2, C2,K2, L2 ∈
Q ∩ Zp by (1) and their respective definitions. Moreover, from (1) it follows that{

(ar, n) ∈ Z2 | D(F)[n] = D
}

(7.81)

=
{(
A1 +mp,B1 +mC1p

K
)
| m ∈ Zp

}
∩ Z2(7.82)

=
{(
A1 +mp,B1 +mC1p

K
)
| m ∈ Z ∧B1 +mC1p

K ∈ Z
}

(7.83)

=
{(
A1 + yp,B1 + yC1p

K
)
| y ∈ Z ∧ ∃ x ∈ Z : Lx− LC1p

Ky = LB1

}
(7.84)

where L := lcm (K1, L1). Bézout’s Lemma implies that the equation Lx − LC1p
Ky = LB1 has

a solution x, y ∈ Z if and only if gcd
(
L,LC1p

K
)

divides LB1, which in return is true if and only

if gcd
(
L,LC1p

K
)

= 1, or equivalently L = L1, respectively K1 | L1. In this case the set of all
solutions is given by{

(x, y) ∈ Z2 | Lx− LC1p
Ky = LB1

}
=
{

((R1B1 +mC1p
K)L1, (S1B1 +m)L1) | m ∈ Z

}
(7.85)

where R1, S1 ∈ Z such that L1R1 − L1C1p
KS1 = 1. Consequently,{

(ar, n) ∈ Z2 | D(F)[n] = D
}

(7.86)

=
{(
A1 + (S1B1 +m)L1p,B1 + (S1B1 +m)L1C1p

K
)
| m ∈ Z

}
.(7.87)
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Analogously we get,{
(ar, n) ∈ Z2 | D(F)[n] = D

}
(7.88)

=
{(
A2 +mC2p,B2 +mpK

)
| m ∈ Zp

}
∩ Z2(7.89)

=
{(
A2 +mC2p,B2 +mpK

)
| m ∈ Z ∧A2 +mC2p ∈ Z ∧B2 ∈ Z

}
(7.90)

=
{(
A2 + yC2p,B2 + ypK

)
| y ∈ Z ∧ ∃ x ∈ Z : Lx− LC2py = LA2 ∧B2 ∈ Z

}
(7.91)

where L := lcm (K2, L2). As before Bézout’s Lemma implies that the equation Lx−LC2py = LA2

has a solution x, y ∈ Z if and only if gcd (L,LC2p) divides LA2, which in return is true if and
only if gcd (L,LC2p) = 1, or equivalently L = L2, respectively K2 | L2. In this case the set of all
solutions is given by{

(x, y) ∈ Z2 | Lx− LC2py = LA2

}
= {((R2A2 +mC2p)L2, (S2A2 +m)L2) | m ∈ Z}(7.92)

where R2, S2 ∈ Z such that L2R2 − L2C2pS2 = 1. Consequently,{
(ar, n) ∈ Z2 | D(F)[n] = D

}
(7.93)

=
{(
A2 + (S2A2 +m)L2C2p,B2 + (S2A2 +m)L2p

K
)
| m ∈ Z

}
.(7.94)

�

As an example consider F := FC = (x, 3x+ 1), r = 1, and D = (P )∞ ∈ S(bnd2,per) and let

U0 :=

cnt(P,0)−1∑
i=0

2pos(P,0)[i]3cnt(P,1)−pos(P,0)[i]+i(7.95)

U1 :=

cnt(P,1)−1∑
i=0

2pos(P,1)[i]3cnt(P,1)−i−1(7.96)

V := 2|P | − 3cnt(P,1).(7.97)

Then a0 = 0, b0 = 1, and b1 = 3. Furthermore, if D 6= (0)∞, simplifying all expressions in
Corollary 7.6 then yields,

K = pos (P, 1)[0] + 1, A1 = 1, B1 =
U1

V
, C1 =

U1

V

1

2K−1
, L1 =

|V |
gcd (U1, V )

,(7.98)

and R1, S1 ∈ Z such that

V

gcd (U1, V )
R1 −

2U1

gcd (U1, V )
S1 = sgn (V ) .(7.99)

Furthermore,{
(a1, n) ∈ Z2 | D(F)[n] = D

}
(7.100)

=
{(
A1 + (S1B1 +m)L12, B1 + (S1B1 +m)L1C12K

)
| m ∈ Z

}
(7.101)

=

{(
1 +

(
S1
U1

V
+m

)
2 |V |

gcd (U1, V )
,
U1

V
+

(
S1
U1

V
+m

)
2 |V |

gcd (U1, V )

U1

V

)
| m ∈ Z

}
(7.102)

=

{(
1,
U1

V

)(
1 + sgn (V )

(
S1

2U1

gcd (U1, V )
+ 2m

V

gcd (U1, V )

))
| m ∈ Z

}
(7.103)

=

{(
1,
U1

V

)
(2m+R1)

|V |
gcd (U1, V )

| m ∈ Z
}

(7.104)

=

{(
1,
U1

V

)
(2m+ 1)

V

gcd (U1, V )
| m ∈ Z

}
(7.105)

=

{(
V

gcd (U1, V )
,

U1

gcd (U1, V )

)
(2m+ 1) | m ∈ Z

}
.(7.106)
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Analogously, if r = 0 and D 6= (1)∞, then a1 = 1, b0 = 1, b1 = 3,

K = pos (P, 0)[0] + 1, A1 = 0, B1 =
U1

V
, C1 =

U0

V

1

2K−1
, L1 =

|V |
gcd (U0, V )

,(7.107)

and R1, S1 ∈ Z such that

V

gcd (U0, V )
R1 −

2U0

gcd (U0, V )
S1 = sgn (V ) .(7.108)

In addition,{
(a0, n) ∈ Z2 | D(F)[n] = D

}
=

{(
V

gcd (U0, V )
,

U0

gcd (U0, V )

)
(2m+ 1)− 1 | m ∈ Z

}
.(7.109)

Note that U0 − U1 = V and gcd (U0, V ) = gcd (U1, V ) = gcd (U0, U1). A consequence of both
Eqn. (7.106) and Eqn. (7.109) is that the Collatz conjecture is equivalent to

N ⊆ UPerP(F) ∧ ∃m ∈ N : mV = U0 ⇒ P (D) ∈ {(0), (0, 1), (1, 0)}(7.110)

and respectively

N ⊆ UPerP(F) ∧ ∃m ∈ N : mV = U1 ⇒ P (D) ∈ {(0, 1), (1, 0)} .(7.111)

Variants of this result can be found in several publications on the original Collatz conjecture, such
as [48].

When do all rational numbers have ultimately periodic digit expansions? Conjectures.
In Corollary 7.3 we proved that all ultimately periodic points of (Q∩Zp)-linear-polynomial p-adic
systems are rational numbers. The converse question whether all rational numbers have ultimately
periodic digit expansions with respect to a given (Q ∩ Zp)-linear-polynomial p-adic system F, i.e.
whether F is ultimately periodic on Q ∩ Zp, is incredibly difficult in general and sits right at the
heart of the Collatz conjecture. The general framework of p-adic systems might help to shed some
light on the true nature of the underlying difficulty, as it allows to discuss the question in a broader
context. In this context we are able to formulate conjectures of increasing generality which are
backed by computer experiments to a varying degree. Several generalizations of the original Collatz
transformation which have been considered in the literature (cf. e.g. [13, 52, 53, 8]) are covered
by these general conjectures.

We begin by revisiting the Collatz conjecture itself.

Conjecture 7.7 (Collatz). Let FC := (x, 3x+ 1) ∈ F2(lin-polyZ). Then,

∀ n ∈ N : ∃ k ∈ N : D(FC)[n][k] = 1.(7.112)

A slightly stronger version is given by

Conjecture 7.8. Let FC := (x, 3x+ 1) ∈ F2(lin-polyZ). Then,

(1) uper-onQ∩Z2
(FC)

(2) ∀ n ∈ N : (uper(D(FC)[n])⇒ ∃ k ∈ N : D(FC)[n][k] = 1).

Considering both parts of the conjecture separately, there are several ways to generalize. The
seemingly most arbitrary element is the definition of FC . Why should (x, 3x + 1) be in any way
special among linear-polynomial 2-adic systems? Experiments show that it probably isn’t if we
weaken (2).

Conjecture 7.9. Let 2 ≤ p ∈ N, F ∈ Fp(lin-polyZ), and B ∈ Z the product of all leading
coefficients of the polynomials F[r](x), r ∈ p. Then,

(1) uper-onQ∩Zp(F) ⇔ |B| < pp

(2) |{P (D(F)[n]) | n ∈ Z}| <∞.

For this conjecture numerous computer experiments have been performed by the author and while
it may take quite a long time for digit expansions to become periodic (especially for larger p), they
all did eventually. One of the experiments that were done was the computation of the maximal
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lengths of the initial and periodic parts of the expansions of all integers in 1000 for all Z-linear-
polynomial p-adic systems satisfying |B| < pp where all constant coefficients are equal to 0, i.e.
the computation of

mI(p) := max
{
|I (D(F)[n])| | F = (b0x, . . . , bp−1x) ∈ Fp(lin-polyZ)(7.113)

|b0 . . . bp−1| < pp

n ∈ 1000
}

mP (p) := max
{
|P (D(F)[n])| | F = (b0x, . . . , bp−1x) ∈ Fp(lin-polyZ)(7.114)

|b0 . . . bp−1| < pp

n ∈ 1000
}
.

For p ∈ {2, 3, 4} these values and the corresponding p-adic systems and starting values generating
them are

mI(2) = 160 for F = (−3x,−x), n = 284(7.115)

mP (2) = 19 for F = (x,−3x), n = 609(7.116)

mI(3) = 52401 for F = (x,−26x,−x), n = 796(7.117)

mP (3) = 3905 for F = (−13x,−x, 2x), n = 608(7.118)

mI(4) = 18481661 for F = (5x,−x,−51x,−x), n = 818(7.119)

mP (4) = 3291996 for F = (−51x,−x,−5x, x), n = 416.(7.120)

Note that the conjecture states in particular that the constant coefficients of the polynomials have
no influence on the question of ultimate periodicity on Q∩Zp. On this aspect of the problem some
results could be achieved which are presented further down in this section.

A further generalization, the status of which is less clear, considers more general coefficients for
the linear polynomials defining the p-adic system.

Conjecture 7.10. Let 2 ≤ p ∈ N, F ∈ Fp(lin-polyQ∩Zp), and B ∈ Q∩Zp the product of all leading

coefficients of the polynomials F[r](x), r ∈ p. Then,

(1) uper-onQ∩Zp(F) ⇔ B ∈ Z ∧ |B| < pp

(2) |{P (D(F)[n]) | n ∈ Z}| <∞.

One of the observations often pointed out as being a first hint that the Collatz conjecture is indeed
very hard to prove, is the fact that 27 takes 70 steps to reach 1 under FC = (x, 3x + 1). In the
context of the conjecture above we can do “much worse” as the following examples show. Let

F1 := (3/11x+ 2,−11x+ 1)(7.121)

F2 := (1/7x+ 2, 21x+ 1)(7.122)

F3 := (1/5x− 4,−15x+ 3).(7.123)

Then,

|I (D(F1)[27])| = 816179238 |P (D(F1)[27])| = 5890445(7.124)

|I (D(F2)[27])| = 312815429 |P (D(F2)[27])| = 22014805908(7.125)

|I (D(F3)[27])| = 18966150 |P (D(F3)[27])| = 122858925930.(7.126)

Furthermore,

P (S(F1)[27])[0] =
292064

113
dI(F1) = 1125086 dP (F1) = 112912(7.127)

P (S(F2)[27])[0] =
197828

73
dI(F2) = 79154 dP (F2) = 7170632(7.128)

P (S(F3)[27])[0] =
101772

56
dI(F3) = 53008 dP (F3) = 5320048(7.129)
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where dI(Fi) and dP (Fi) denote the largest denominators occurring in the initial and periodic
parts of the sequence S(Fi)[27] for i ∈ {1, 2, 3}. Another 2-adic system that was considered in
computer experiments is

F4 := (21/5x, 5/7x+ 1)(7.130)

which satisfies |I (D(F4)[27])| > 1010. The denominator of D(F4)(10
10)(n) is 5128067119930 ≈

4.1477678 · 10110303. Its numerator is approximately 8.2260293 · 10110305 which makes the en-
tire fraction approximately equal to 0.0050422. It appears hard to even guess whether D(F4)[27] is
ultimately periodic. Figure 2 and Figure 3 below show the developments of the magnitudes of the
denominators in the sequences S(Fi)[27], i ∈ {1, 2, 3, 4}. While for F1,F2,F3 these magnitudes can
increase and decrease at any time, in the case of F4 there is a tradeoff between the 5-adic and 7-adic
valuations of the denominators of successive entries of the sequence S(F4)[27]. If the 5- and 7-adic
valuations of the denominator are both positive and F4[0] is applied, then the 5-adic valuation of
the denominator increases by 1 while the 7-adic valuation decreases by 1. If, however, F4[1] is
applied, it is the other way around. This means that the sum of the 5- and 7-adic valuations of
the denominator can only ever change if one of the two is equal to 0 which explains the shape of
the graph showing this sum in Figure 3. The consequence of this observation is that on the one
hand the denominators of the sequence S(F4)[27] get large, which makes it unlikely that a period
occurs, but on the other hand the sums of the 5- and 7-adic valuations of the denominator stay
constant for a large number of steps, which increases the chances for the occurrence of a period.
Which of these effects is stronger in the (infinitely) long run, remains an open question.

816179238

25086

5890445

2912

312815429

9154

22014805908

170632

18966150

3008

122858925930

320048

Figure 2. The magnitudes (i.e. the 11-, 7-, and 5-adic valuations respectively)
of the denominators in the sequences S(F1)[27] (top row), S(F2)[27] (middle row),
and S(F3)[27] (bottom row). The left column shows the initial parts and the right
column shows the periodic parts of the respective sequences.
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10000000000

72649

500000000

36304

500000000

18464

500000000

36304

Figure 3. The two images in the left column show the magnitudes (i.e. the
number of digits in base 35) of the denominators of the first 1010 and 5 · 108

entries of the sequences S(F4)[27] respectively. The top right image shows the
5- (dark gray) and 7-adic valuations (light gray) of the denominators and the
bottom right image shows their sums. It can be seen that changes (which are
mostly increases) in the sum only occur, if one of the two valuations is equal to 0.

Comparing the two conditions

B ∈ Z(7.131)

|B| < pp(7.132)

of Conjecture 7.10 (1) one can see that there is a conceptual difference between them that might
be significant in explaining the difference between F1,F2,F3 on the one hand and F4 on the other.
While the second condition does not include the extremal case |B| = pp (indeed, by Lemma 7.1 (2)
it could not even occur), the first condition does, in the sense explained above. It thus might be
necessary to replace the condition B ∈ Z by a slightly stronger one which excludes the extremal
case in some way. The condition B ∈ Z may be understood as a placeholder for a possibly slightly
modified condition “in the same spirit”, i.e. a condition which also involves only the absolute
values of the linear coefficients of the polynomials in a “simple” way.

The following two conjectures state that we do not gain anything by increasing the degrees of
the polynomials . . .

Conjecture 7.11. Let 2 ≤ p ∈ N, F ∈ Fp(polyQ∩Zp), and B ∈ Zp the product of all leading

coefficients of the polynomials F[r](x), r ∈ p. Then,

(1) uper-onQ∩Zp(F) ⇔ F ∈ Fp(lin-polyQ∩Zp) ∧B ∈ Z ∧ |B| < pp

(2) |{P (D(F)[n]) | n ∈ Z}| <∞.
. . . or by further extending the set from where to take the coefficients of the polynomials.

Conjecture 7.12. Let 2 ≤ p ∈ N, F ∈ Fp(poly), and B ∈ Zp the product of all leading coefficients
of the polynomials F[r](x), r ∈ p. Then,

(1) uper-onQ∩Zp(F) ⇔ F ∈ Fp(lin-polyQ∩Zp) ∧B ∈ Z ∧ |B| < pp

(2) |{P (D(F)[n]) | n ∈ Z}| <∞.
An overview of the conjectures above is given in Figure 4 below.

Note that if F ∈ Fp, then

lin-poly(F)⇔ polyZp,1(F)(7.133)
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by Theorem 4.1 (2) and Lemma 7.1 (2), and if F ∈ Fp(w-canf, lin-polyQ∩Zp), then

uper-onQ∩Zp(F)(7.134)

⇔ [Q ∩ Zp ⊆ UPerP](F)(7.135)

⇔
{(

AF(DP )

p|DP | −BF(DP )
p|DI | −AF(DI)

)
1

BF(DI)
| DI , DP ∈ S(bndp,fin)

}
= Q ∩ Zp(7.136)

by the “In particular” part of Corollary 7.3. By the same argument the original Collatz conjecture
(Conjecture 7.7) is equivalent to the following divisibility question (cf. Eqn. (7.110)):

N ⊆ UPerP(F) ∧
{
D ∈ S(bndp,fin) | AFC (D)

p|D| −BFC (D)
∈ N

}
= {(0, 1), (1, 0)} .(7.137)

Non-rational coefficients. A first general result on the question of ultimate periodicity on Q∩Zp
of polynomial p-adic systems where at least one coefficient of the polynomials is not a rational
number, is given by the following theorem. It implies in particular that Conjecture 7.11 (1) and
Conjecture 7.12 (1) are equivalent.

Theorem 7.13. Let 2 ≤ p ∈ N and F ∈ Fp(poly,¬polyQ∩Zp). Then, ¬uper-onQ∩Zp(F).

Proof. Assume to the contrary that uper-onQ∩Zp(F) and let r ∈ p such that

F[r] = a0 + a1x+ · · ·+ adx
d /∈ (Q ∩ Zp)[x].(7.138)

If F[r](a) = b for some a ∈ Q∩(r+pZp) and b ∈ Zp\Q, then a ∈ UPerP(F) by uper-onQ∩Zp(F) and

hence (b−b%p)/p = F(a) ∈ UPerP(F) which contradicts uper-onQ∩Zp(F), since (b−b%p)/p ∈ Zp\Q.

Thus, F[r](Q ∩ (r + pZp)) ⊆ Q ∩ Zp. In particular,

bi := F[r](r + ip) = a0 + a1(r + ip) + · · ·+ ad(r + ip)d ∈ Q ∩ Zp(7.139)

for all i ∈ J1, d+ 1K. Thus, a0, . . . , ad solve a system of d + 1 independent linear equations with
coefficients in Q ∩ Zp. The unique solution of this system (which is a0, . . . , ad) can be computed
using Gaussian elimination which expresses the solution in terms of the coefficients of the linear
equations using only the four basic arithmetical operations. Thus, a0, . . . , ad ∈ Q ∩ Zp which is a
contradiction. �

Note that the proof actually shows [UPerP 6⊆ Q∩Zp](F) which of course implies ¬uper-onQ∩Zp(F).

In addition, one might conjecture that [Q ∩ Zp 6⊆ UPerP](F) also holds under the assumptions of
the theorem but a proof appears to be much harder.

The constant coefficients. A consequence of Theorem 7.2 is that, at least for (Q ∩ Z2)-linear-
polynomial 2-adic system, the constant coefficients of the linear polynomials have no influence on
the question of whether all rational numbers have ultimately periodic digit expansions.

Theorem 7.14. Let F = (a′0 + b0x, a
′
1 + b1x),G = (a′′0 + b0x, a

′′
1 + b1x) ∈ F2(w-canf, lin-poly).

Then,

πF,G(n) =
a′0a
′′
1 − a′1a′′0 + n((b0 − 2)a′′1 − (b1 − 2)a′′0)

(b0 − 2)a′1 − (b1 − 2)a′0
(7.140)

for all n ∈ Z2. In particular, if lin-polyQ∩Z2
(F) and lin-polyQ∩Z2

(G), then πF,G(Q ∩ Z2) = Q ∩ Z2

and consequently

uper-onQ∩Z2
(F)⇔ uper-onQ∩Z2

(G)(7.141)

by the “In particular” part of Lemma 6.1.

Proof. First we observe that it is sufficient to prove Eqn. (7.140) on a dense subset of Z2, since
πF,G is a continuous function by Lemma 3.17 (1) (and so is the right-hand side of Eqn. (7.140)).
The subset we will consider is given by the set of all 2-adic integers which have a periodic F-digit
expansion which is dense in Z2, because F has the block property.
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Let D ∈ S(bnd2,¬emp,fin), and m,n the unique elements of Zp satisfying

D(F)[m] = D∞(7.142)

D(G)[n] = D∞(7.143)

(cf. Lemma 3.11). Then, πF,G(m) = ψG
−1 ◦ ψF(m) = n by definition of πF,G(n), and

m =
AF(D)

2|D| −BF(D)
(7.144)

n =
AG(D)

2|D| −BG(D)
(7.145)

by Corollary 7.3. We are left to show that

a′0a
′′
1 − a′1a′′0 +m((b0 − 2)a′′1 − (b1 − 2)a′′0)

(b0 − 2)a′1 − (b1 − 2)a′0
= n(7.146)

and respectively

a′0a
′′
1(2|D| −B) +AF(D)((b0 − 2)a′′1 − (b1 − 2)a′′0)(7.147)

= a′1a
′′
0(2|D| −B) +AG(D)((b0 − 2)a′1 − (b1 − 2)a′0)

where

e := cnt (D, 0)(7.148)

o := cnt (D, 1)(7.149)

B := BF(D) = BG(D) =

1∏
r=0

bcnt(D,r)r = b
cnt(D,0)
0 b

cnt(D,1)
1 = b0

eb1
o.(7.150)

We compute

AF(D) =

1∑
r=0

a′r

cnt(D,r)−1∑
i=0

2pos(D,r)[i]
1∏
s=0

bcnt(D[pos(D,r)[i]+1,|D|−1],s)
s(7.151)

= a′0

cnt(D,0)−1∑
i=0

2pos(D,0)[i]b
cnt(D[pos(D,0)[i]+1,|D|−1],0)
0 b

cnt(D[pos(D,0)[i]+1,|D|−1],1)
1 +(7.152)

a′1

cnt(D,1)−1∑
i=0

2pos(D,1)[i]b
cnt(D[pos(D,1)[i]+1,|D|−1],0)
0 b

cnt(D[pos(D,1)[i]+1,|D|−1],1)
1

= a′0

cnt(D,0)−1∑
i=0

2pos(D,0)[i]b
cnt(D,0)−i−1
0 b

cnt(D,1)−pos(D,0)[i]+i
1 +(7.153)

a′1

cnt(D,1)−1∑
i=0

2pos(D,1)[i]b
cnt(D,0)−pos(D,1)[i]+i
0 b

cnt(D,1)−i−1
1

= a′0

e−1∑
i=0

2Eibe−i−10 bo−Ei+i1 + a′1

o−1∑
i=0

2Oibe−Oi+i0 bo−i−11(7.154)

where

Ei := pos (D, 0)[i] for all i ∈ e(7.155)

Oi := pos (D, 1)[i] for all i ∈ o.(7.156)

Analogously, we get

AG(D) = a′′0

e−1∑
i=0

2Eibe−i−10 bo−Ei+i1 + a′′1

o−1∑
i=0

2Oibe−Oi+i0 bo−i−11 .(7.157)
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Let

Se :=

e−1∑
i=0

2Eibe−i−10 bo−Ei+i1(7.158)

So :=

o−1∑
i=0

2Oibe−Oi+i0 bo−i−11 .(7.159)

Then, our goal Eqn. (7.147) is equivalent to

a′0a
′′
1(2|D| −B) + (a′0Se + a′1So) ((b0 − 2)a′′1 − (b1 − 2)a′′0)(7.160)

= a′1a
′′
0(2|D| −B) + (a′′0Se + a′′1So) ((b0 − 2)a′1 − (b1 − 2)a′0)

which is again equivalent to

(2|D| −B + (b0 − 2)Se + (b1 − 2)So)(a
′
0a
′′
1 − a′1a′′0) = 0.(7.161)

Since we may assume without loss of generality that a′0a
′′
1−a′1a′′0 6= 0 (and Z2 has no zero divisors),

we need to show that

2|D| −B + (b0 − 2)Se + (b1 − 2)So = 0(7.162)

which we will prove to be true for every D ∈ S(bnd2,fin) by induction on the length of D.
If |D| = 0 then e = 0, o = 0 and hence B = 1, Se = 0, and So = 0. Altogether, Eqn. (7.162) is

clearly true.
Now assume that Eqn. (7.162) holds for some D ∈ S(bnd2,fin) and let D′ ∈ S(bnd2,fin) such

that D′ = D · (d) where d ∈ {0, 1}. Furthermore, let

e′ := cnt (D′, 0), o′ := cnt (D′, 1), B′ := b0
e′b1

o′(7.163)

E′i := pos (D′, 0)[i] for all i ∈ e′, O′i := pos (D′, 1)[i] for all i ∈ o′(7.164)

S′e :=

e′−1∑
i=0

2E
′
ibe
′−i−1

0 b
o′−E′i+i
1 , S′o :=

o′−1∑
i=0

2O
′
ib
e′−O′i+i
0 bo

′−i−1
1 .(7.165)

On the one hand, if d = 0, then

e′ = e+ 1, o′ = o, B′ = b0B,(7.166)

E′i = Ei for all i ∈ e, E′e = |D| , O′i = Oi for all i ∈ o,(7.167)

S′e = b0Se + 2|D|, S′o = b0So(7.168)

and

2|D
′| −B′ + (b0 − 2)S′e + (b1 − 2)S′o(7.169)

= 2 · 2|D| − b0B + (b0 − 2)
(
b0Se + 2|D|

)
+ (b1 − 2)b0So

= 2 · 2|D| + b0

(
−B + (b0 − 2)Se + 2|D| + (b1 − 2)So

)
− 2 · 2|D|(7.170)

= 0.(7.171)

On the other hand, if d = 1, then

e′ = e, o′ = o+ 1, B′ = b1B,(7.172)

E′i = Ei for all i ∈ e, O′i = Oi for all i ∈ o, O′o = |D| ,(7.173)

S′e = b1Se, S
′
o = b1So + 2|D|(7.174)



66 M. WEITZER

and

2|D
′| −B′ + (b0 − 2)S′e + (b1 − 2)S′o(7.175)

= 2 · 2|D| − b1B + (b0 − 2)b1Se + (b1 − 2)
(
b1So + 2|D|

)
= 2 · 2|D| + b1

(
−B + (b0 − 2)Se + (b1 − 2)So + 2|D|

)
− 2 · 2|D|(7.176)

= 0(7.177)

which completes the proof of Eqn. (7.140).
For the “In particular” part we observe that b0 ≡ b1 ≡ 1 mod 2, a′0 ≡ a′′0 ≡ 0 mod 2, and

a′1 ≡ a′′1 ≡ 1 mod 2 by Theorem 4.1 (2) and Lemma 7.1 (2) (note that F,G ∈ F2(w-canf)). Thus

a′0a
′′
1 − a′1a′′0 ≡ 0 mod 2(7.178)

(b0 − 2)a′′1 − (b1 − 2)a′′0 ≡ 1 mod 2(7.179)

(b0 − 2)a′1 − (b1 − 2)a′0 ≡ 1 mod 2(7.180)

and hence

π : Q ∩ Z2 → Q ∩ Z2(7.181)

n 7→ a′0a
′′
1 − a′1a′′0 + n((b0 − 2)a′′1 − (b1 − 2)a′′0)

(b0 − 2)a′1 − (b1 − 2)a′0

is bijective. �

A natural follow-up question is whether the “In particular” part of the previous theorem is true
for general (Q ∩ Zp)-linear-polynomial p-adic systems, i.e. if the constant coefficients of the linear
polynomials which define the p-adic systems can always be neglected when dealing with the question
of whether the p-adic system is ultimately periodic on Q ∩ Zp. If true, this would be a first step
in proving the general conjectures 7.9 – 7.12. At least for p = 2, which includes the Collatz case,
this first step has already been made. For p ≥ 3 the situation becomes more difficult as there
doesn’t seem to exist a simple formula for πF,G(n) in general. Nevertheless, we state the following
conjecture which would probably be a good start for future work on this matter.

Conjecture 7.15. Let 2 ≤ p ∈ N and F = (a′0 + b0x, . . . , a
′
p−1 + bp−1x),G = (a′′0 + b0x, . . . , a

′′
p−1 +

bp−1x) ∈ Fp(lin-polyQ∩Zp). Then, πF,G(Q ∩ Zp) = Q ∩ Zp and consequently

uper-onQ∩Zp(F)⇔ uper-onQ∩Zp(G)(7.182)

by the “In particular” part of Lemma 6.1.

Swapping polynomials. In the last subsection we have established that, at least in the case
p = 2, the constant coefficients of the linear polynomials defining a (Q ∩ Zp)-linear-polynomial
p-adic system F have no influence on whether F is ultimately periodic on Q ∩ Zp. Here we will
prove, again for p = 2, that the specific positions of the linear coefficients can also be neglected,
which is another step closer to the proof of the general conjectures 7.9 – 7.12. Before we can
formulate our result, we need to add a little flexibility to the definition of πF,G in that we allow
the digits of the F-digit expansions to be permuted before interpreting them as G-digit expansions.
For two p-adic systems F and G and for a bijective function σ : p→ p (which extends naturally to
S(bndp), cf. the end of the subsection on sequences in Section 2) let

πF,σ,G := ψG
−1 ◦ σ ◦ ψF : Zp → Zp.(7.183)

If σ is the identity function, then clearly πF,σ,G = πF,G. Note that here we formulate our result for
a specific choice for the constant coefficients. In combination with Theorem 7.14 a general result
involving arbitrary constant coefficients can easily be achieved since πG,τ,H ◦ πF,σ,G = πF,τ◦σ,H.
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Theorem 7.16. Let F = (b0x, 1 + b1x),G = (b1x, 1 + b0x) ∈ F2(lin-poly), and σ : {0, 1} → {0, 1},
0 7→ 1, 1 7→ 0. Then,

πF,σ,G(n) =
1 + n(b1 − 2)

2− b0
(7.184)

for all n ∈ Z2. In particular, if lin-polyQ∩Zp(F) and lin-polyQ∩Zp(G), then πF,σ,G(Q∩Z2) = Q∩Z2

and consequently,

uper-onQ∩Z2
(F)⇔ uper-onQ∩Z2

(G)(7.185)

by the “In particular” part of Lemma 6.1.

Note that we actually need a slight generalization of Lemma 6.1 to account for the permutation σ
in πF,σ,G. The proof can easily be adapted to show that the lemma also holds if πF,G is replaced
by πF,σ,G, if the set B from the assumptions is stable under σ, i.e. if σ(B) = B. For B :={
S ∈ S(bndp) | per(S)

}
, B :=

{
S ∈ S(bndp) | uper(S)

}
, and B :=

{
S ∈ S(bndp) | aper(S)

}
this

is true for every σ which implies that the “In particular” part of the lemma holds for πF,σ,G without
additional assumptions.

Proof of Theorem 7.16. As we did in the proof of Theorem 7.14, we again only consider a dense
subset of Z2 (clearly, πF,σ,G and the right-hand side of Eqn. (7.184) are also continuous functions)
which will again be the set of all 2-adic integers which have a periodic F-digit expansion.

Let D ∈ S(bnd2,¬emp,fin), and m,n the unique elements of Zp satisfying

D(F)[m] = D∞(7.186)

D(G)[n] = σ(D∞)(7.187)

(cf. Lemma 3.11). Then, πF,σ,G(m) = ψG
−1 ◦ σ ◦ ψF(m) = n by definition of πF,σ,G(n), and

m =
AF(D)

2|D| −BF(D)
(7.188)

n =
AG(σ(D))

2|D| −BG(σ(D))
(7.189)

by Corollary 7.3. Note that,

BF(D) = b
cnt(D,0)
0 b

cnt(D,1)
1 = b

cnt(σ(D),0)
1 b

cnt(σ(D),1)
0 = BG(σ(D)).(7.190)

We are thus left to show that

1 +m(b1 − 2)

2− b0
= n(7.191)

and respectively

2|D| − b0eb1o + (b0 − 2)AG(σ(D)) + (b1 − 2)AF(D) = 0(7.192)

where

e := cnt (D, 0)(7.193)

o := cnt (D, 1).(7.194)

As in the proof of Theorem 7.14 we compute

AF(D) =

o−1∑
i=0

2Oibe−Oi+i0 bo−i−11(7.195)

AG(σ(D)) =

e−1∑
i=0

2Eibe−i−10 bo−Ei+i1(7.196)

where

Ei := pos (D, 0)[i] for all i ∈ e(7.197)

Oi := pos (D, 1)[i] for all i ∈ o.(7.198)
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Thus, our goal Eqn. (7.192) is equivalent to

2|D| − b0eb1o + (b0 − 2)

e−1∑
i=0

2Eibe−i−10 bo−Ei+i1 + (b1 − 2)

o−1∑
i=0

2Oibe−Oi+i0 bo−i−11 = 0(7.199)

which is identical to Eqn. (7.162) which we already proved. �

As we did after Theorem 7.14, we again formulate a conjecture on how to generalize the previous
theorem.

Conjecture 7.17. Let 2 ≤ p ∈ N, σ : p → p a bijective function, and F = (b0x, . . . , bp−1x),G =

(bσ(0)x, . . . , bσ(p−1)x) ∈ Fp(lin-poly). Then, πF,σ,G(Q ∩ Zp) = Q ∩ Zp and consequently,

uper-onQ∩Zp(F)⇔ uper-onQ∩Zp(G)(7.200)

by the “In particular” part of (the mentioned generalization of) Lemma 6.1.

We give an example which combines the statements of Theorem 7.14 and Theorem 7.16 to
illustrate how to compute πF,σ,G(n) in a general situation.

Example 7.18. Let F1 := (5x + 4,−7x + 19), F2 := (5x,−7x + 1), F3 := (−7x, 5x + 1),
F4 := (−7x − 12, 5x + 3), and σ : {0, 1} → {0, 1}, 0 7→ 1, 1 7→ 0. Then, Theorem 7.14 and
Theorem 7.16 imply that

πF1,F2
(n) =

4 + 3n

93
, πF2,σ,F3

(n) =
−1 + 9n

3
, πF3,F4

(n) =
−12− 9n

9
(7.201)

and consequently

πF1,σ,F4
(n) = πF3,F4

(n) ◦ πF2,σ,F3
(n) ◦ πF1,F2

(n) =
−35− 3n

31
.(7.202)

Indeed, if m := 156065447
59288775 and n := − 847767822

612650675 , then −35−3m31 = n and

F1(m) = (1, 0, 1, 0) · (1, 1, 0, 1, 0, 0, 0, 1)∞(7.203)

F4(n) = (0, 1, 0, 1) · (0, 0, 1, 0, 1, 1, 1, 0)∞.(7.204)

The contractive and expansive cases. In the previous subsections we have proven for p = 2 and
conjectured for p ≥ 3 that neither the constant coefficients nor the order of the linear coefficients
of the polynomials defining a (Q ∩ Zp)-linear-polynomial p-adic system matter when it comes to
the question of whether the p-adic system is ultimately periodic on Q∩Zp. These observations are
closely related to the conjectures 7.9 – 7.12 which essentially state that the answer to this question
only depends on the product of the linear coefficients. In the special cases where the (Q∩Zp)-linear-
polynomial p-adic system is either contractive or expansive, we can even go further and prove some
of the conjectures under these additional constraints. Among other things the following theorem
characterizes contractive and expansive (Q ∩ Zp)-linear-polynomial p-adic systems.

Theorem 7.19. Let 2 ≤ p ∈ N, F = (a0 + b0x, . . . , ap−1 + bp−1x) ∈ Fp(lin-polyQ∩Zp). Then,

(1) contr(F) ⇔ ∀ r ∈ p : |br| < p
(2) exp(F) ⇔ ∀ r ∈ p : |br| > p.
(3) mix(F) ⇔ ∃ r ∈ p : |br| < p ∧ ∃ r ∈ p : |br| > p
(4) d-contr(F) ⇔ ∀ r ∈ p : ar, br ∈ Z
(5) ¬d-exp(F).

Proof. Let

M := max

{∣∣∣∣ |ar|+ p− 1

|br| − p

∣∣∣∣ | r ∈ p} .(7.205)

Note that M is well-defined since |br| 6= p for all r ∈ p by Theorem 4.1 (2) and Lemma 7.1 (2).
(1), “⇒”: Assume to the contrary that |br| > p for some r ∈ p and let m ∈ N such that

m >
|ar|+ p− 1− r(|br| − p)

p(|br| − p)

(
⇔ |br| (mp+ r)− |ar| − p+ 1

p
> mp+ r

)
.(7.206)
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Then,

|F(mp+ r)| =
∣∣∣∣ar + br(mp+ r)− (ar + br(mp+ r))%p

p

∣∣∣∣(7.207)

≥ |br| (mp+ r)− |ar| − p+ 1

p
(7.208)

> mp+ r = |mp+ r|(7.209)

and hence F cannot be contractive.
(1), “⇐”: We compute

|n| > M ⇒ |n|
∣∣∣∣bn%p∣∣− p∣∣ > ∣∣an%p∣∣+ p− 1(7.210)

⇔ |n| (p−
∣∣bn%p∣∣) > ∣∣an%p∣∣+ p− 1(7.211)

⇔ |n| p >
∣∣an%p∣∣+

∣∣bn%pn∣∣+ p− 1(7.212)

⇒ |n| p >
∣∣an%p∣∣+

∣∣bn%pn∣∣+ (an%p + bn%pn)%p(7.213)

⇒ |n| >
∣∣∣∣an%p + bn%pn− (an%p + bn%pn)%p

p

∣∣∣∣ = F(n).(7.214)

(2), “⇒”: Assume to the contrary that |br| < p for some r ∈ p and let m ∈ N such that

m >
|ar|+ p− 1− r(p− |br|)

p(p− |br|)

(
⇔ |br| (mp+ r) + |ar|+ p− 1

p
< mp+ r

)
.(7.215)

Then,

|F(mp+ r)| =
∣∣∣∣ar + br(mp+ r)− (ar + br(mp+ r))%p

p

∣∣∣∣(7.216)

≤ |br| (mp+ r) + |ar|+ p− 1

p
(7.217)

< mp+ r = |mp+ r|(7.218)

and hence F cannot be expansive.
(2), “⇐”: We compute

|n| > M ⇒ |n|
∣∣∣∣bn%p∣∣− p∣∣ > ∣∣an%p∣∣+ p− 1(7.219)

⇔ |n| (
∣∣bn%p∣∣− p) > ∣∣an%p∣∣+ p− 1(7.220)

⇔ |n| p < −
∣∣an%p∣∣+

∣∣bn%pn∣∣− p+ 1(7.221)

⇒ |n| p < −
∣∣an%p∣∣+

∣∣bn%pn∣∣− (an%p + bn%pn)%p(7.222)

⇒ |n| <
∣∣∣∣an%p + bn%pn− (an%p + bn%pn)%p

p

∣∣∣∣ = F(n).(7.223)

Note that we also could have referred to Theorem 6.3 as (2), “⇐” is a special case of the theorem.
(3): Follows directly from (1) and (2).
(4), “⇒”: Assume to the contrary that ar = a/b with (a, b) ∈ Z × N coprime, br = c/d with
(c, d) ∈ Z × N coprime for some r ∈ p, and (b, d) 6= (1, 1). Since a/b = ar ∈ Zp and a and b are
coprime it follows that also p and b are coprime. Thus, there are x, y ∈ Z such that xp + yb = 1
by Bézout’s Lemma.

First we consider the case d 6= 1. Let n := r− rxp = ryb ∈ Z. Then, n ∈ (r+ pZ)∩ bZ and we
get

F(n) =
an/b+ c/d− (an/b+ c/d)%p

p
(7.224)

with an/b − (an/b + c/d)%p ∈ Z and c/d ∈ Q \ Z (since d 6= 1). Thus, F(n) ∈ Q \ Z but n ∈ Z
which contradicts d-contr(F).
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For the case d = 1 let n := r − rxp+ p = ryb+ p. Then, n ∈ (r + pZ) but n /∈ bZ (since b 6= 1
and p and b are coprime) and we get c/d − (an/b + c/d)%p ∈ Z and an/b ∈ Q \ Z (since n /∈ bZ
and a and b are coprime). Thus, F(n) ∈ Q \ Z but n ∈ Z, which again contradicts d-contr(F).
(4), “⇐”: Follows directly from the definitions.
(5): Let (a, b) ∈ Z × N coprime with a0 = a/b and (c, d) ∈ Z × N coprime with b0 = c/d.
Furthermore, let u, v ∈ Z such that

apu+ c ≡ 0 mod gcd(b, d)(7.225)

gcd(gcd(b, d)v + u, d/ gcd(b, d)) = 1.(7.226)

Such u and v exist because of two basic facts from elementary number theory, namely

∀m ∈ N : ∀ a, b ∈ Z : (∃ x ∈ Z : a+ bx ≡ 0 mod m ⇔ gcd(m, b) | a)(7.227)

∀ a, b ∈ Z : ∀ 0 6= c ∈ Z : (∃ x ∈ Z : gcd(a+ bx, c) = 1 ⇔ gcd(a, b, c) = 1) .(7.228)

To see that the conditions of these two statements are satisfied, note that gcd(p, b) = 1 by
Lemma 7.1, and hence gcd(gcd(b, d), ap) = 1 | c, and that gcd(gcd(b, d), u) = 1 (because the
equation c + ux ≡ 0 mod gcd(b, d) has a solution, viz. ap, and gcd(gcd(b, d), c) = 1) and hence
gcd(u, gcd(b, d), d/ gcd(b, d)) = 1. Using u and v we set

n :=
p(u+ v gcd(b, d))b/ gcd(b, d)

d/ gcd(b, d)
∈ Q ∩ pZp.(7.229)

By definition of u and v we get gcd(p(u + v gcd(b, d))b/ gcd(b, d), d/ gcd(b, d)) = 1, which implies
that n as given above is in lowest terms. Since n%p = 0 we get

F(n) =
1

p

(an
b

+
c

d
−
(an
b

+
c

d

)
%p
)

(7.230)

=
1

p

(
(apu+ c)/ gcd(b, d) + apv

d/ gcd(b, d)
−
(an
b

+
c

d

)
%p

)
.(7.231)

Thus, the denominator of F(n) in lowest terms is at most (in absolute value) d/ gcd(b, d) (since
gcd(b, d) divides apu+ c by definition of u) which is the denominator of n in lowest terms. �

For contractive Z-linear-polynomial- and for expansive (Q ∩ Zp)-linear-polynomial p-adic systems
this settles the question of ultimate periodicity on Q ∩ Zp (cf. Conjecture 7.9).

Corollary 7.20. Let 2 ≤ p ∈ N, F = (a0 + b0x, . . . , ap−1 + bp−1x) ∈ Fp(lin-polyQ∩Zp). Then,

(1) ∀ r ∈ p : ar, br ∈ Z ∧ |br| < p ⇒ uper-onQ∩Zp(F)

(2) ∀ r ∈ p : |br| > p ⇒ ¬uper-onQ∩Zp(F).

Proof. Follows from Theorem 7.19, Lemma 6.2, and the “In particular” part of Corollary 7.3. �

The mixed case. There are two mixed cases to be considered: a (Q∩Zp)-linear-polynomial p-adic
system F could be of mixed type (i.e. mix(F)) or mixing denominators (i.e. d-mix(F)). To the best
knowledge of the author the question for ultimate periodicity on Q ∩ Zp has not been settled for
even a single such F. The most famous example is of course given by FC = (x, 3x+1) of the Collatz
conjecture which is of mixed type by Theorem 7.19 (3). While it appears to be completely out of
reach to answer whether or not uper-onQ∩Z2

holds for FC at the moment, the general framework
that is p-adic systems, might provide examples that are easier to tackle without being “trivial”
like in the contractive (e.g. Fp = (x, . . . , x), standard base p) or expansive (e.g. F = (3x, 3x+ 1))
cases which are settled by Corollary 7.20. Before we list some of these examples we will summarize
what has already been achieved in this and in the previous section.

Corollary 7.21. Let 2 ≤ p ∈ N and F ∈ Fp(polyQ∩Zp). Then,

(1) If F[r] = ar + brx with ar, br ∈ Z and |br| < p for all r ∈ p, then uper-onQ∩Zp(F)

(2) If either F[r] is of degree 2 or higher or F[r] = ar + brx with |br| > p for all r ∈ p, then
¬uper-onQ∩Zp(F).

Proof. Follows directly from Theorem 6.3, Theorem 7.19, and Corollary 7.20. �



AN INTRODUCTION TO p-ADIC SYSTEMS 71

Progress on conjectures: summary and open questions. Figure 4 below gives an overview
of the status of the conjectures 7.9 – 7.12 and the mixed case. Related results and conjectures
are given in Theorem 7.14, Conjecture 7.15, Theorem 7.16, Conjecture 7.17, Theorem 7.19, and
Corollary 7.21.

poly(F) Thm. 7.13: ¬uper-onQ∩Zp(F)(I)

polyQ∩Zp(F) Con. 7.11: ¬uper-onQ∩Zp(F)(II)

|br| > p if F[r] linear Cor. 7.21: ¬uper-onQ∩Zp(F)(III)

lin-polyQ∩Zp(F) Con. 7.10: ¬uper-onQ∩Zp(F)(IV)

|b0| , . . . , |bp−1| > p Cor. 7.21: ¬uper-onQ∩Zp(F)(V)

|b0 · · · bp−1| < pp Con. 7.10: ¬uper-onQ∩Zp(F)(VI)

b0 · · · bp−1 ∈ Z Con. 7.10: uper-onQ∩Zp(F)(VII)

lin-polyZ(F) Con. 7.9: uper-onQ∩Zp(F)(VIII)

|b0| , . . . , |bp−1| < p Cor. 7.21: uper-onQ∩Zp(F)(IX)

Figure 4. Overview of settled and open cases on the question of ultimate peri-
odicity on Q ∩ Zp of a p-adic system F, where br is the linear coefficient of the
polynomial F[r] for r ∈ p.

Referring to the different regions in Figure 4 we give a list of possibly interesting examples of p-adic
systems, some of which only just fall into the respective cases.

(I) F = (a0 + b0x, a1 + b1x), where {1} 6= {a0, b0, a1, b1} ⊆
{

1,
√

17,−
√

17
}

F = (a0 + b0x, . . . , a2 + b2x), where {1} 6= {a0, b0, . . . , a2, b2} ⊆
{

1,
√
−2,−

√
−2
}

F = (a0 + b0x, . . . , a4 + b4x), where {1} 6= {a0, b0, . . . , a4, b4} ⊆ {1, i,−i}
(II) F = (x2 + x) · (x)p−1

F = (xap + x)p−1 · ((p− 1)x), where a ∈ N (say, a = 1000)
(III) F = (3x, x2 + x)

F = (x2 + x, 3x)
F = (x2 + x, x2 + x)

(IV) F = ((pp + 1)x) · (x)p−1

F = ((p+ (p = 2 ? 3 : 1))x)p−1((p− 1)x)
(V) F = ((p+ 1)x)p

F = ((pp + 1)x)p

(VI) F = (1/(p+ 1)x, (p− 1)x) · (x)p−2

F = (1/(p+ 1)x)bp/2c+1 · ((p+ 1)x)dp/2e−1

(VII) F = (1/(p+ 1)x, (p+ 1)x) · (x)p−2

F = (1/(p+ 1)x)bp/2c · ((p+ 1)x)dp/2e

(VIII) F = ((p+ 1)x) · (x)p−1
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F = ((p+ 1)x)bp/2c · ((p− 1)x)dp/2e

F = ((pp − 1)x) · (x)p−1

(IX) F = (x)p (standard base p)
F = ((p− 1)x)p.

Note that (cf. Example 5.5),
√

17 ∈ {. . . 0010111, . . . 1101001} ⊆ Z2(7.232)
√
−2 ∈ {. . . 0200211, . . . 2022012} ⊆ Z3(7.233)

i ∈ {. . . 2431212, . . . 2013233} ⊆ Z5.(7.234)

Generalizations. The previous subsections of this section deal with the question of ultimate
periodicity on a specific set (Q ∩ Zp) for a specific kind of p-adic systems (mostly (Q ∩ Zp)-linear-
polynomial ones). While the set Q of rational numbers is certainly special among all dense subsets
of Zp and polynomial functions are also special among all functions on Zp, there is no obvious reason
why this combination of “subset of Zp” and “class of functions on Zp” should be the only one to
result in interesting patterns and relations. Analyzing previous results, the following generalization
appears to be natural: for 2 ≤ p ∈ N and A ⊆ Fp let

PerP(A) :=
⋃
F∈A

PerP(F), UPerP(A) :=
⋃
F∈A

UPerP(F), APerP(A) :=
⋃
F∈A

APerP(F).(7.235)

We say that an element F of A generates the periodic, ultimately periodic, or aperiodic points of A,
if PerP(F) = PerP(A), UPerP(F) = UPerP(A), or APerP(F) = APerP(A) respectively, and denote
by PerP-Gen(A), UPerP-Gen(A), and APerP-Gen(A) the respective sets of all these F ∈ A.
By the “In particular” part of Corollary 7.3 we get

UPerP(Fp(lin-polyQ∩Zp)) = Q ∩ Zp(7.236)

and Conjecture 7.10 can be expressed as

UPerP-Gen(Fp(lin-polyQ∩Zp))
?
=
{

F ∈ Fp(lin-polyQ∩Zp)
∣∣(7.237)

F = (a0 + b0x, . . . , ap−1 + bp−1x)

b0 · · · bp−1 ∈ Z
|b0 · · · bp−1| < pp

}
.

Related results and conjectures are given in Theorem 7.14, Conjecture 7.15, Theorem 7.16, Conjec-
ture 7.17, Theorem 7.19, and Corollary 7.20. Generalizing Conjecture 7.10 one might try to study
any of the sets PerP(A), UPerP(A), APerP(A), PerP-Gen(A), UPerP-Gen(A), or APerP-Gen(A)
for other classes A of p-adic systems, such as Fp(polyC,D) where C is a (possibly dense) subset
of Zp, and D ⊆ N0 is a set of allowed degrees, some class of rational functions on Zp (Section 4),
p-adic systems defined by certain permutation polynomials (Section 8), etc.

8. Permutation polynomials and trees of cycles

In Section 4 we proved that “almost all” Zp-polynomial p-fibred functions are actually p-fibred
systems (cf. Theorem 4.1 and Theorem 4.8) giving us a multitude of examples. In addition to this
class, the different interpretations of p-adic systems discussed in Section 3 allow us to find even
more p-adic systems that are essentially different from those we already know. This new class is
again defined by polynomials but in a very different way. It turns out that p-adic permutations,
which we proved to be just a different interpretation of p-adic systems (cf. Theorem 3.18), can
be polynomial functions and are thus defined by a single polynomial in Zp[x] in this case (in the
following we will use the terms “polynomial” and “polynomial function” interchangeably). These
polynomials are exactly what is commonly known as permutation polynomials. A polynomial
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f ∈ Zp[x] is called a p-permutation polynomial, where 2 ≤ p ∈ N, if the following holds:

f1 is the identity on Zp/pZp(8.1)

∀ k ∈ N : fk is bijective,(8.2)

where

fk : Zp/pkZp → Zp/pkZp.(8.3)

x+ pkZp 7→ f(x) + pkZp
Please note that we slightly adapted the usual notion of permutation polynomials (cf. [26, 37, 38,
49]) which usually are required only to satisfy the second condition but not the first. We need the
first condition because p-adic permutations must satisfy Eqn. (3.93). Using the following lemma
which can also be found in [26], it is very easy to test whether a given polynomial is a p-permutation
polynomial.

Lemma 8.1. Let 2 ≤ p ∈ N and f ∈ Zp[x]. Then f is a p-permutation polynomial if and only if
f1 is the identity on Zp/pZp and f2 is bijective.

If π := f , then Eqn. (8.1) and Eqn. (8.2) are clearly equivalent to Eqn. (3.93) and Eqn. (3.94)
respectively which proves the following theorem.

Theorem 8.2. Let 2 ≤ p ∈ N and f ∈ Zp[x]. Then f is a p-permutation polynomial if and only

if f is a p-adic permutation (i.e. f ∈ Pp).

Theorem 3.18 thus implies that for every p-permutation polynomial f and every p-adic system G
there is a p-adic system F such that f = πF,G. A natural follow-up question to this observation is
whether all p-adic permutations are actually polynomial functions, i.e. p-permutation polynomials.
The following example shows that this is not the case even if F and G are Z-linear-polynomial.

Example 8.3. Let F := FC = (x, 3x + 1), G := F2 = (x, x − 1), and π := πF,G. Then π ∈ P2

(since F and G are in F2), π(n) = −n/3 for all n ∈
{

2k | k ∈ N
}

, and π(n) = −23n/9 for all

n ∈
{

2k + 2k−1 | k ∈ N
}

. If we assume that π is a polynomial function then both π(x) + x/3 and
π(x) + 23x/9 have infinitely many roots. This implies (since Q2 does not contain zero divisors)
that both polynomials are equal to 0. But then x/3 is equal to 23x/9 (as polynomials) which is a
contradiction.

In the other direction one might ask if every p-permutation polynomial f can be written as f = πF,G
where both F and G are Zp-polynomial p-adic systems. This is not the case either, but there does
not seem to be a proof as easy as the one given above for the other direction. Instead we will
make use of the tree of cycles introduced at the end of Section 3 to demonstrate that certain
p-permutation polynomials cannot be represented in this way. The method we will use is quite
general in nature and can probably be adapted to show that other classes of p-adic systems which
may be found in the future, are also distinct from classes known up to this point.

Cycle trees. For a general p-adic permutation π ∈ Pp we recall some of the properties of its tree
of cycles G(π) = (V(π), E(π)) and the corresponding edge labeling c(π) : E(π) → p as given in
Corollary 3.24:

• G(π) is a directed, infinite, rooted tree,
• the out-degrees of all vertices are contained in J1, pK and the out-degree of the root is p,
• the labels of all outgoing edges of a given vertex sum up to p.

We call any edge labeled tree satisfying all of the above properties a p-cycle tree.
The first natural question in the context of p-adic systems that arises is whether every p-cycle

tree can be realized as the tree of cycles of some p-adic permutation. This is indeed the case as
the following theorem shows.

Theorem 8.4. Let 2 ≤ p ∈ N and G = (V, E) be a p-cycle tree with edge labeling c : E → J1, pK.
Let o ∈ V denote the root of G and for every vertex o 6= v ∈ V let p(v) ∈ V denote the predecessor
of v, i.e. the unique vertex satisfying p(v)v ∈ E. Furthermore, for every v ∈ V let S(v) ∈ S(bndV)
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be a minimal sequence of all successors of v in an arbitrary but fixed order, i.e. vS(v)[i] ∈ E for all
i ∈ |S(v)|, {u ∈ V | vu ∈ E} = {S(v)[i] | i ∈ |S(v)|}, and |{u ∈ V | vu ∈ E}| = |S(v)|. We label the
vertices of G by the following function (which we will also call c as there is no danger of ambiguity),

c : V → J1, pK.(8.4)

v 7→

{
1 if v = o

c(p(v)v) if v 6= o

Furthermore, we define the functions o (which stands for “offset” and, again, is not at risk of
being confused with the identically named root), P (standing for “positions”), and E (standing for
“entries”),

o : V → p(8.5)

v 7→

{
0 if v = o∑pos(S(p(v)),v)−1
i=0 c(S(p(v))[i]) if v 6= o

P : V → S(bndN0
)(8.6)

v 7→

{
(0) if v = o∏c(v)−1
i=0

(
P (p(v)) + (o(v) + i)pk(v)−1

)
if v 6= o

E : V → S(bndp)(8.7)

v 7→

{
(0) if v = o∏c(v)−1
i=0 (o(v) + i)|E(p(v))|−1 · (o(v) + (i+ 1)%c(v)) if v 6= o

where the products mean products of sequences (i.e. their concatenation) and k(v) denotes the
layer of v, i.e. its distance from the root, i.e.,

k : V → N0.(8.8)

v 7→

{
0 if v = o

k(p(v)) + 1 if v 6= o

Using P and E we define an infinite p-digit table D ∈ Dp with domain Zp and block property by
writing the entries in E at positions P in the following way:

D
[
P (v)[i] + apk(v)

] [
k(v)− 1

]
= E(v)[i](8.9)

for all o 6= v ∈ V, i ∈ |P (v)|, and a ∈ Zp. Let F ∈ Fp(canf) be the p-adic system corresponding to

D according to Eqn. (3.131), π := πF,(x)p ∈ Pp, and

ϕ : V → V(π).(8.10)

v 7→ (k(v), [([P (v)[0]], . . . , [P (v)[|P (v)| − 1]])]∼σ )

Then, ϕ is an isomorphism between G and G(π) that respects the labelings c and c(π). In particular,
(G, c) and (G(π), c(π)) are isomorphic.

To illustrate the workings of the theorem consider the example given in Figure 5 below.
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1 1 1

3 1 2 2 1

3 3 1 2 3 1 1 1

0

1 2 3

4

9

5 6

10 11 12

7 8

13 14 15 16

→

000000000011111111112222222
012345678901234567890123456
012012012012012012012012012
000111222000111222000111222
000000000111111111222222222

1 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1
3 2 2 2 2 2 2 2 2 2 2

012012012012012012012012012
4 1 2 0 1 2 0 1 2 0 120
5 0 0 0 0
6 2 1 2 1 2 1 21
7 1 0 1 0 1 0 10
8 2 2 2 2

101220012101220012101220012
9 0 0 1 1 1 2 2 2 0 001112220
10 1 2 0 120
11 0 0 00
12 1 2 2 1 1221
13 0 1 1 2 2 0 011220
14 0 0
15 1 1
16 2 2

010001100121112221202220012

1
→

...
...
...
...

0 010
1 101
2 210
3 020
4 120
5 201
6 001
7 110
8 220
9 011

10 102
11 211
12 021
13 121
14 202
15 002
16 112
17 221
18 012
19 100
20 212
21 022
22 122
23 200
24 000
25 111
26 222

...
...
...
...

Figure 5. The image to the left shows layers 0 to 3 of a 3-cycle tree. The table
in the middle shows the corresponding sequences of entries E(v) (right part) and
the sequences of positions P (v) (colored center part) for all 16 vertices (excluding
the root). For convenience, the top part of the table contains the indices of the
respective positions in base 10 and base 3. The table to the right shows the
resulting 3-digit table D (cf. also Eqn. (3.75)).

The 3-adic system F corresponding to D in Figure 5 satisfies

F(33)%32 = (1, 0, 1, 5, 5, 0, 0, 1, 5, 7, 3, 7, 2, 2, 3, 3, 4, 2, 4, 6, 4, 8, 8, 6, 6, 7, 8)(8.11)

(cf. Corollary 3.8 (2)), and the resulting 3-adic permutation π thus has the cycles (to improve
readability we omit the square brackets indicating equivalence classes, i.e. we write (0, 3, 6) for
[([0], [3], [6])]∼σ )

Σ(π0) : (0)(8.12)

Σ(π1) : (0), (1), (2)(8.13)

Σ(π2) : (0, 3, 6), (1), (4, 7), (2, 5), (8)(8.14)

Σ(π3) : (0, 3, 6, 9, 12, 15, 18, 21, 24), (1, 10, 19), (4, 7), (13, 16, 22, 25), (2, 5, 11, 14, 20, 23),(8.15)

(8), (17), (26)

which coincide with the sequences P (v) and also define the same tree as the one given in Figure 5.

Proof of Theorem 8.4. We will prove the theorem by induction on the layer. It may be helpful
to consult Figure 5 when following the argument. In the following we denote the set of vertices
contained in the k-th layer of G, k ∈ N0, by Vk = {v ∈ V | k(v) = k} (analogously we set V(π)k =
{(`, σ) ∈ V(π) | ` = k}).

The first thing we observe is that the k-th layer of the graph G(π) only depends on DJkK, i.e.
the columns 0 to k− 1 of D. Additionally, by definition of D the k-th column DJk− 1K of D (note
that we start at 0 when indexing columns) is completely determined by “the first pk entries” of
the column, i.e. the entries D[0][k − 1], . . . ,D[pk − 1][k − 1] (the quotation marks are due to the
fact that a column of D technically has entries for all p-adic integers on which the notion “first”
does not make sense as there is no natural order on Zp). We thus define the sequence

Sk := (D[0][k − 1], . . . ,D[pk − 1][k − 1]) ∈ S(bndp, lenpk)(8.16)
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for all k ∈ N (in the example given in Figure 5 these sequences are the lighter shaded parts
of the columns of the rightmost table, i.e. S1 = (0, 1, 2), S2 = (1, 0, 1, 2, 2, 0, 0, 1, 2), and S3 =
(0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 0, 2, 2, 2, 0, 0, 1, 2)). By definition of D we thus get

Sk[j] = D [P (v)[i]] [k − 1] = E(v)[i](8.17)

for all k ∈ N and j ∈ pk where v ∈ Vk and i ∈ |P (v)| are the unique elements satisfying j = P (v)[i]
and whose existence and uniqueness we will prove in the following.

For that we first observe that P (v) is pk(v)-bounded for all v ∈ V which can easily be shown
by induction on k using the fact that the labels of all vertices that share a parent vertex, sum up
to p. In the same way it can be readily verified that

∑
v∈Vk |P (v)| = pk for all k ∈ N0. We are

thus left to show that for all k ∈ N0, P (v) and P (w) don’t have any common entries if v and w
are distinct elements of Vk. This follows again by induction on k (in order to conclude that P (v)
and P (w) don’t share any entries if v and w have distinct parent vertices) and by definition of the
offset function o (in order to conclude that P (v) and P (w) don’t share any entries if v and w have
the same parent vertex). Altogether we just have proven that for all k ∈ N0 and j ∈ pk there is a
unique v ∈ Vk and i ∈ |P (v)| satisfying j = P (v)[i]. Together with the fact that |P (v)| = |E(v)|
for all v ∈ V this implies that the sequences Sk, k ∈ N and consequently D are well-defined.

Next we note that the concatenation S :=
∏∞
k=1 Sk of all sequences Sk is exactly the infinite

sequence corresponding to D in the sense of Eqn. (3.75). Again by induction on the layer k and
by the definition of o it can be shown that S has the (p, k)-block property and thus D ∈ Dp.

We are now ready to proceed with the induction argument to show that ϕ is an isomorphism
between (G(π), c(π)) (which we now know to be well-defined) and (G, c). Clearly, the zeroth
layers of (G, c) and (G(π), c(π)) only consist of the respective roots which are mapped to each
other by ϕ. Now assume that ϕ is an isomorphism between the layers 0 to k − 1 of (G, c) and
(G(π), c(π)) for some k ∈ N and let v ∈ Vk−1 and v′ := ϕ(v). Then it follows from the induction
hypothesis that v′ = (k − 1, P (v)) ∈ V(π)k−1 (to economize notation we will identify P (v) and
[([P (v)[0]], . . . , [P (v)[|P (v)| − 1]])]∼σ ). We are left to show that ϕ maps the children of v exactly
to the children of v′ and also preserves the labels of all edges between v and its children. For that
let w ∈ Vk such that vw ∈ E . We need to show that w′ := ϕ(w) = (k, P (w)) ∈ V(π), v′w′ ∈ E(π)
and |P (w)| / |P (v)| = c(w) = c(vw). The latter part follows directly from the definition of P . To
prove the other two statements we observe that

ψ(x)p,k−1
−1 ◦ ψF,k−1(P (v)[i]) = πk−1(P (v)[i]) = P (v)[(i+ 1)% |P (v)|](8.18)

for all i ∈ |P (v)|, where

ψF,k : Zp/pkZp → S(bndp, lenk)(8.19)

n 7→ ψF(n)[k]

for any p-adic system F and k ∈ N0 (again we omit the square brackets indicating equivalence
classes to improve readability). Rearranging Eqn. (8.18) results in

ψF,k−1(P (v)[i]) = ψ(x)p,k−1 (P (v)[(i+ 1)% |P (v)|])(8.20)

for all i ∈ |P (v)|, i.e. the first k−1 digits of the standard base p expansion of P (v)[(i+1)% |P (v)|] ∈
pk−1. Furthermore, from the definitions of P and E it follows that

P (w) =

c(w)−1∏
i=0

(
P (v) + (o(w) + i)pk−1

)
(8.21)

E(w) =

c(w)−1∏
i=0

(o(w) + i)|P (v)|−1 · (o(w) + (i+ 1)%c(w)).(8.22)
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We thus get

ψF,k(P (w)[i]) = D[P (w)[i]][k](8.23)

= D[P (v)[i% |P (v)|][k − 1] · (E[w][i])(8.24)

= ψF,k−1 (P (v)[i% |P (v)|]) · (E(w)[i])(8.25)

= ψ(x)p,k−1 (P (v)[(i+ 1)% |P (v)|]) ·(8.26)

(o(w) + (bi/ |P (v)|c+ (i% |P (v)| 6= |P (v)| − 1 ? 0 : 1))%c(w))

= ψ(x)p,k−1 (P (v)[(i+ 1)% |P (v)|]) · (o(w) + b(i+ 1)/ |P (v)|c%c(w))(8.27)

= ψ(x)p,k (P (w)[(i+ 1)% |P (w)|])(8.28)

for all i ∈ |P (w)|, or equivalently,

πk(P (w)[i]) = ψ(x)p,k
−1 ◦ ψF,k(P (w)[i]) = P (w)[(i+ 1)% |P (w)|].(8.29)

Since all elements of P (w) are mutually distinct modulo pk, P (w) is a cycle of πk and consequently
w′ ∈ V(π). In addition, P [w]%pk−1 = P [v]c(w) and thus v′w′ ∈ E(π) which completes the proof. �

The following theorem characterizes completely the sets of all isomorphism classes of trees with
up to 4 layers which may occur as subtrees of trees of cycles of 2-adic permutations defined by
Z2-polynomial 2-adic systems or 2-permutation polynomials. This will allow also to show that
the sets of all p-adic permutations defined by Zp-polynomial p-adic systems and p-permutation
polynomials respectively, have both exclusive elements (that the two sets are not disjoint either
follows from the simple observation that πF,F(n) = n for all p-adic systems F and n ∈ Zp).

Theorem 8.5. For 2 ≤ p ∈ N and k ∈ N0 let

Sp,k :=
{

isomorphism class of T | F,G ∈ Fp(polyZp)(8.30)

T full k-layer rooted subtree of (G(πF,G), c(πF,G))
}

Tp,k :=
{

isomorphism class of T | F,G ∈ Fp(polyZp)(8.31)

T full k-layer rooted subtree of (G(πF,G), c(πF,G))

|σ| > 1 for root (`, σ) of T
}

Up,k :=
{

isomorphism class of T | f ∈ Zp[x] p-permutation polynomial(8.32)

T full k-layer rooted subtree of (G(f), c(f))
}

Vp,k :=
{

isomorphism class of T | f ∈ Zp[x] p-permutation polynomial(8.33)

T full k-layer rooted subtree of (G(f), c(f))

|σ| > 1 for root (`, σ) of T
}
.

Then,

|S2,2| = 5 |S2,3| = 20 |S2,4| = 71(8.34)

|T2,2| = 5 |T2,3| = 12 |T2,4| = 50(8.35)

|U2,2| = 5 |U2,3| = 18 |U2,4| = 83(8.36)

|V2,2| = 3 |V2,3| = 5 |V2,4| = 7(8.37)

and all these sets are given in Figure 6 where membership in the respective sets is indicated by the
black boxes below each graph in the order S, T , U , V .

Note that Figure 6 lists all possible isomorphism classes of 2-, 3-, and 4-layer rooted trees with
out-degrees in {1, 2} of which there are 5, 20, and 230 respectively. Also note that the edge labels
are not shown as they are uniquely fixed by the graph itself in the case p = 2.
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2-1 2-2 2-3 2-4 2-5 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10

3-11 3-12 3-13 3-14 3-15 3-16 3-17 3-18 3-19 3-20 4-1 4-2 4-3 4-4 4-5

4-6 4-7 4-8 4-9 4-10 4-11 4-12 4-13 4-14 4-15 4-16 4-17 4-18 4-19 4-20

4-21 4-22 4-23 4-24 4-25 4-26 4-27 4-28 4-29 4-30 4-31 4-32 4-33 4-34 4-35

4-36 4-37 4-38 4-39 4-40 4-41 4-42 4-43 4-44 4-45 4-46 4-47 4-48 4-49 4-50

4-51 4-52 4-53 4-54 4-55 4-56 4-57 4-58 4-59 4-60 4-61 4-62 4-63 4-64 4-65

4-66 4-67 4-68 4-69 4-70 4-71 4-72 4-73 4-74 4-75 4-76 4-77 4-78 4-79 4-80

4-81 4-82 4-83 4-84 4-85 4-86 4-87 4-88 4-89 4-90 4-91 4-92 4-93 4-94 4-95

4-96 4-97 4-98 4-99 4-100 4-101 4-102 4-103 4-104 4-105 4-106 4-107 4-108 4-109 4-110

4-111 4-112 4-113 4-114 4-115 4-116 4-117 4-118 4-119 4-120 4-121 4-122 4-123 4-124 4-125

4-126 4-127 4-128 4-129 4-130 4-131 4-132 4-133 4-134 4-135 4-136 4-137 4-138 4-139 4-140

4-141 4-142 4-143 4-144 4-145 4-146 4-147 4-148 4-149 4-150 4-151 4-152 4-153 4-154 4-155

4-156 4-157 4-158 4-159 4-160 4-161 4-162 4-163 4-164 4-165 4-166 4-167 4-168 4-169 4-170

4-171 4-172 4-173 4-174 4-175 4-176 4-177 4-178 4-179 4-180 4-181 4-182 4-183 4-184 4-185

4-186 4-187 4-188 4-189 4-190 4-191 4-192 4-193 4-194 4-195 4-196 4-197 4-198 4-199 4-200

4-201 4-202 4-203 4-204 4-205 4-206 4-207 4-208 4-209 4-210 4-211 4-212 4-213 4-214 4-215

4-216 4-217 4-218 4-219 4-220 4-221 4-222 4-223 4-224 4-225 4-226 4-227 4-228 4-229 4-230

Figure 6. The sets Sp,k, Tp,k, Up,k, and Vp,k for p = 2 and k ∈ {2, 3, 4}.

Proof of Theorem 8.5. We begin with the easier part of the proof and show that all the isomorphism
classes marked by black boxes in Figure 6 actually are elements of the respective sets by listing
examples of 2-adic permutations πF,G, where F and G are Z2-polynomial 2-adic systems, and 2-
adic permutations defined by 2-permutation polynomials whose trees of cycles contain the given
isomorphism classes as subtrees. These examples are summarized in the following table, where
the Z2-polynomial 2-adic system F (for S2,k and T2,k) and the 2-permutation polynomial f (for
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U2,k and V2,k) are given and G := (x, x− 1) ∈ F2 is supposed to be fixed. Note that all claimed
subtrees are found within the layers 0 to 8 of G(πF,G) and G(f) respectively.

Subtree S2,k, F = . . . T2,k, F = . . . U2,k, f = . . . V2,k, f = . . .

2 − 1 : (x+2, x+1) (x+2, x+1) x+2 x+2

2 − 2 : (x, x+1) (3x+2, x+1) 3x

2 − 3 : (x+2, x+1) (3x+2, 3x+3) x+2 3x

2 − 4 : (x, x+1) (3x, x+1) 3x

2 − 5 : (3x, x+1) (x, x+1) x 2x
2
+3x+2

3 − 1 : (x+2, x+1) (x+2, x+1) x+2 x+2

3 − 2 : (3x+2, x+1)

3 − 3 : (x+4, x+1) (3x+2, x+3) 3x

3 − 4 : (3x, x+1)

3 − 5 : (x+2, x+1) (x+4, x+1) x+2 3x

3 − 6 : (x, x+1) (3x+2, x+1) 2x
2
+3x+2

3 − 7 : (3x+2, x+1) 2x
3
+3x+2

3 − 8 : (3x+2, 3x+3) (2x
2
+x+4, x

2
+x) 2x

2
+3x+2

3 − 9 : (3x+4, 3x+3) (x
2
+x+2, x

2
+x) 2x

2
+x+2

3 − 10 : (3x+4, x+1) 2x
3
+x+4

3 − 11 : (3x+2, x+3) 2x
3
+x+2

3 − 12 : (x, x+1) (x+2, 3x+1) 3x

3 − 13 : (x+4, x+3) (3x+2, 3x+3) x+4 2x
2
+3x+2

3 − 14 : (3x, 3x+1) (3x, x+1) 2x
2
+x

3 − 15 : (3x, x+1) 2x
3
+x

3 − 16 : (3x, x+1) 2x
3
+3x

3 − 17 : (3x, 3x+1) (2x
2
+x, x

2
+x) 2x

2
+3x

3 − 18 : (x, x+3) (x
2
+3x, x

2
+x) 2x

2
+x x

4
+3x

2
+x+2

3 − 19 : (x, 3x+1) 2x
3
+3x+4

3 − 20 : (2x
2
+x, x

2
+x+2) (x, x+1) x 2x

3
+2x

2
+3x+2

4 − 1 : (x+2, x+1) (x+2, x+1) x+2 x+2

4 − 3 : (3x+2, x+3)

4 − 5 : (x+4, x+1) (3x+2, x+3) 3x

4 − 6 : (3x, x+1)

4 − 8 : (x+2, x+1) (x+4, x+1) x+2 3x

4 − 9 : (3x+4, x+3) (3x+4, x+3)

4 − 10 : (3x, x+1)

4 − 15 : 2x
3
+3x+2

4 − 16 : (3x, x+1)

4 − 18 : (3x+2, 3x+3) (4x
2
+x+4, x

2
+x) 7x

4 − 19 : (3x, x+1)

4 − 21 : (x+4, 3x+1) (x+4, 3x+1) 2x
2
+x+2

4 − 23 : (3x, x+1)

4 − 26 : (3x
2
+3x+4, x

2
+x) (2x

2
+x, x

2
+x+2) 4x

3
+2x

2
+7x+2

4 − 27 : 2x
3
+7x+2

4 − 31 : (3x+2, x+1) (3x+2, x+1)

4 − 32 : (3x+4, x+1) (3x+4, x+1) x
4
+x

2
+x+6

4 − 34 : 2x
3
+x+4

4 − 35 : (3x, 3x+1) (2x
2
+3x+4, x

2
+x) x

4
+2x

3
+x

2
+3x+4

4 − 36 : x
4
+x

2
+x+4

4 − 42 : (x, 3x+3) (x, 3x+3) 2x
2
+3x+2

4 − 44 : (x+4, x+3) (3x+2, 3x+3) x+4 2x
2
+3x+2

4 − 47 : (x, x+1) (x+2, 3x+3) 2x
2
+3x

4 − 48 : (3x+2, x+3)

4 − 49 : (x, 3x+3)

4 − 51 : (3x+4, x+1)

4 − 52 : x
4
+x

2
+x+2

4 − 53 : (3x+4, x+3) (3x+4, x+3) x
4
+2x

3
+3x

2
+x+6

4 − 54 : 2x
3
+5x+4

4 − 56 : 2x
3
+x+2

4 − 57 : (2x
2
+3x, x

2
+x+2) (2x

2
+3x, x

2
+x+2) 2x

2
+x+6

4 − 58 : x
4
+x

2
+x

4 − 59 : (3x+2, 3x+1) (2x
2
+x, x

2
+x) 4x

3
+2x

2
+3x+2

4 − 69 : (2x
2
+x+4, x

2
+x+2) (4x

2
+3x+2, x

2
+x+2) x

5
+3x

3
+5x+4

4 − 70 : x
5
+x

3
+2x

2
+x+4

4 − 73 : x
4
+3x

2
+3x+4

4 − 74 : (2x
2
+3x+4, x

2
+x) (2x

2
+3x+4, x

2
+x) x

4
+2x

3
+3x

2
+x+2

4 − 75 : (3x+4, x+3)

4 − 79 : (x+4, x+1) (x+2, 3x+1) 3x

4 − 80 : 4x
4
+2x

3
+6x

2
+7x+6

4 − 81 : (x, 3x+1) (x, 3x+1) x
4
+2x

3
+3x

2
+x

4 − 86 : (3x, x+1) (3x, x+1) x
4
+2x

3
+x

2
+3x

4 − 87 : (2x
2
+x+4, x

2
+x) (4x

2
+x, x

2
+x) 2x

2
+x

4 − 90 : (x
2
+3x+4, x

2
+x+2) (3x

2
+3x+2, 2x

2
+3x+3) x

4
+2x

3
+3x

2
+3x+4
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4 − 91 : x
4
+x

2
+3x+4

4 − 99 : (3x
2
+x+4, x

2
+x+2)

4 − 100 : (3x+4, x+3)

4 − 101 : (x
2
+3x+2, x

2
+x+2) (2x

2
+3x, x

2
+3x) x

4
+2x

3
+x

2
+x+4

4 − 102 : 2x
3
+3x

4 − 103 : (3x+4, 3x+3) (3x+4, 3x+3) 4x
2
+x+4

4 − 104 : x
5
+x

3
+2x

2
+5x+4

4 − 106 : (x, x+1) (x+4, 3x+1) 7x

4 − 107 : 4x
4
+6x

3
+6x

2
+3x+6

4 − 108 : (x+4, 3x+3) (x+4, 3x+3) x
4
+2x

3
+3x

2
+x+4

4 − 113 : (3x, x+1)

4 − 114 : x
4
+3x

2
+3x

4 − 115 : 6x
3
+5x

4 − 123 : (3x+4, x+1) (3x+4, x+1) 2x
2
+5x

4 − 126 : x
5
+x

3
+3x

4 − 127 : (2x
2
+3x+4, x

2
+3x+4) (3x

2
+3x+2, 2x

2
+3x+1) x

5
+5x

4
+x

3
+7x

2
+7x+4

4 − 128 : x
4
+x

2
+7x+4

4 − 135 : (3x, x+1)

4 − 138 : (3x+4, x+1) (3x+4, x+1) x
5
+3x

3
+2x

2
+3x

4 − 139 : x
5
+5x

4
+7x

3
+7x

2
+x+4

4 − 140 : (3x, x+1) (3x, x+1) x
4
+2x

3
+x

2
+5x

4 − 141 : (2x
2
+x+4, x

2
+x) (2x

2
+3x+2, x

2
+x) x

5
+3x

3
+x+4

4 − 142 : (x, x+3) (3x+4, 3x+3) 5x x
4
+3x

2
+x+2

4 − 143 : x
4
+x

2
+x+6

4 − 144 : 2x
3
+5x

4 − 150 : (x, 3x+1)

4 − 151 : 2x
3
+x

4 − 161 : (x
2
+3x, x

2
+x+2) (3x

2
+3x+2, 4x

2
+3x+1) x

4
+2x

3
+3x

2
+7x

4 − 162 : (4x
2
+x, x

2
+x+2) (2x

2
+3x+2, 2x

2
+x+3) x

5
+3x

3
+x

4 − 163 : (2x
2
+x+4, x

2
+x) (2x

2
+x+4, x

2
+x) 2x

2
+3x

4 − 164 : 2x
3
+7x

4 − 165 : (2x
2
+x+2, x

2
+x+2) (4x

2
+x+2, x

2
+3x+4) x

5
+3x

3
+2x

2
+3x+4

4 − 167 : (x
2
+x+2, x

2
+x+2)

4 − 169 : (3x
2
+x+2, 3x

2
+3x+4) (3x

2
+x+2, 3x

2
+3x+4) 2x

2
+3x 2x

2
+3x

4 − 170 : x
5
+5x

4
+3x

3
+7x

2
+5x+4

4 − 171 : (3x+2, x+1) (3x+2, x+1) x
4
+2x

3
+x

2
+x

4 − 174 : (2x
2
+3x, x

2
+x+2)

4 − 175 : x
4
+x

2
+7x

4 − 176 : x
5
+x

3
+2x

2
+5x

4 − 177 : (x
2
+3x, x

2
+x) (x

2
+3x, x

2
+x) 2x

2
+x

4 − 178 : 6x
3
+x

4 − 193 : (x, 3x+1)

4 − 194 : (2x
2
+x, x

2
+x+2) (x

2
+3x+2, 2x

2
+3x+1) x

5
+3x

3
+4x

2
+5x

4 − 195 : x
5
+x

3
+3x+4

4 − 196 : 2x
3
+3x+4

4 − 197 : (3x
2
+x, x

2
+x)

4 − 199 : (x
2
+x+2, x

2
+x) (x

2
+x+2, x

2
+x) 3x

5
+x

4
+7x

3
+7x

2
+7x

4 − 200 : (3x
2
+3x, x

2
+x) (3x

2
+3x, x

2
+x) 4x

3
+5x

4 − 201 : x
4
+x

2
+3x

4 − 202 : x
5
+x

3
+6x

2
+5x

4 − 203 : (x
2
+x, x

2
+x)

4 − 204 : x
5
+x

3
+6x

2
+x

4 − 214 : (x, 3x+1)

4 − 215 : 2x
3
+2x

2
+5x

4 − 216 : (3x
2
+x+4, x

2
+x) (3x

2
+x+4, x

2
+x) x

4
+2x

3
+3x

2
+3x

4 − 217 : (2x
2
+3x+2, x

2
+x+2) (2x

2
+3x+2, x

2
+x+2) x

5
+3x

3
+4x

2
+x

4 − 218 : (x
2
+3x, x

2
+x) (x

2
+3x, x

2
+x) 2x

2
+5x

4 − 220 : (x
2
+x+4, x

2
+3x) (x

2
+x+4, x

2
+3x) 2x

2
+x 2x

3
+2x

2
+3x+2

4 − 221 : x
5
+x

3
+2x

2
+x

4 − 227 : (2x
2
+x, x

2
+x+2) (2x

2
+3x+2, 3x

2
+x+4) x

5
+3x

3
+5x

4 − 228 : (x
2
+x+2, x

2
+3x) (2x

2
+x+2, x

2
+3x+2) 4x

3
+4x

2
+x

4 − 230 : (x, x+1) (x, x+1) x 2x
3
+x+2

In the other direction we need to show that all isomorphism classes not marked by black boxes
cannot be realized as the isomorphism class of a subtree of the tree of cycles of a 2-adic permutation
of the respective type. To do so we define the auxiliary function

ϕπ,k : Z2 → {0, 1}(8.38)

n 7→ ψF2,k+1(πk+1(n))[k] = D((x, x− 1))[π(n)][k]

for all 2-adic permutations π and all k ∈ N0, i.e. ϕπ,k(n) is the k-th digit (the digit corresponding
to 2k) in the base 2 expansion of π(n) (note, F2 = (x, x − 1) and we omit the square brackets
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indicating equivalence classes to improve readability). Also, by Eqn. (3.94) we get

ϕπ,k(n) = 1− ϕπ,k(n+ 2k)(8.39)

= ϕπ,k(n+ 2k+1)(8.40)

for all k ∈ N0 and n ∈ Z2.
For arbitrary Z2-polynomial 2-adic systems F and G, 2-permutation polynomial f , and k ∈ N0

we will prove the relations

(1) ϕπ,k+2(n000) + ϕπ,k+2(n010) + ϕπ,k+3(n100) + ϕπ,k+3(n110) + ϕπ,k+3(n101) + ϕπ,k+3(n111) ≡
ϕπ,k+1(n000) + ϕπ,k+1(n100) mod 2

(2) ϕf ,k+2(n000) + ϕf ,k+2(n010) + ϕf ,k+3(n000) + ϕf ,k+3(n010) + ϕf ,k+3(n001) + ϕf ,k+3(n011) ≡
0 mod 2

(3) k ≥ 1⇒
ϕf,k+1(n000) + ϕf,k+2(n000) + ϕf,k+3(n010) + ϕf,k+3(n011) ≡ 0 mod 2

(4) k ≥ 1⇒
(ϕf,k+1(n000) + ϕf,k+2(n010) + ϕf,k+3(n000) ∈ {0, 3} ? 0 : 1) ≡
ϕf,k(n000)+ϕf,k+1(n100)+ϕf,k+2(n000)+ϕf,k+3(n010)+ϕf,k+4(n000)+ϕf,k+4(n001) mod 2

for all n ∈ Z2, where π := πF,G and n(a020+···+a`2`) := na0...a` := n+ a02k+0 + · · ·+ a`2
k+` for

all ` ∈ N0 and a0, . . . , a` ∈ {0, 1}.
To prove (1) we first show that if arbitrary 2-adic permutations π, π1, π2 satisfy (1), then so do

π−1 and π2 ◦ π1. For all n ∈ Z2 there is an sn ∈ 24 such that

ψF2,k+4(n(r)) = ψF2,k(n) · ψF2,4(r + sn)(8.41)

for all r ∈ 24. Furthermore, if π is a 2-adic permutation it follows from the definition that there
are unique mπ,n,[0], . . . ,mπ,n,[15] ∈ 24 such that

ψF2,k+4(π(n(r))) = ψF2,k(π(n)) · ψF2,4(mπ,n,r)(8.42)

for all r ∈ 24 and the mπ,n,r satisfy

r ≡ s mod 2` ⇔ mπ,n,r ≡ mπ,n,s mod 2`(8.43)

for all ` ∈ 4 and r, s ∈ 2`. Thus there is a bijective function

π(n) : Z2/2
4Z2 → Z2/2

4Z2(8.44)

r 7→ mπ,n,r−sn

satisfying π(n)(r + sn) = mπ,n,r for all r ∈ 24 and

r ≡ s mod 2` ⇔ π(n)(r) ≡ π(n)(s) mod 2`(8.45)

for all ` ∈ 4 and r, s ∈ 2`. Thus we get

∀ n ∈ Z2 : ∀ r ∈ 24 : ψF2,k+4(n(r)) = ψF2,k(n) · ψF2,4(r + sn)(8.46)

⇒ ∀ n ∈ Z2 : ψF2,k+4(π−1(π(n))) = ψF2,k(π−1(π(n))) · ψF2,4(π−1(n)(π(n)(sn)))(8.47)

⇒ ∀ n ∈ Z2 : ψF2,k+4(π−1(n)) = ψF2,k(π−1(n)) · ψF2,4(π−1(π−1(n))(π(π−1(n))(sπ−1(n))))(8.48)

⇒ ∀ n ∈ Z2 : ψF2,k+4(π−1(n)) = ψF2,k(π−1(n)) · ψF2,4(π−1(π−1(n))(mπ,π−1(n),0))(8.49)

⇒ ∀ n ∈ Z2 : ψF2,k+4(π−1(n)) = ψF2,k(π−1(n)) · ψF2,4(π−1(π−1(n))(sn))(8.50)

⇒ ∀ n ∈ Z2 : ∀ r ∈ 24 : ψF2,k+4(π−1(n(r))) = ψF2,k(π−1(n)) · ψF2,4(π−1(π−1(n))(sn(r)
))(8.51)

⇒ ∀ n ∈ Z2 : ∀ r ∈ 24 : ψF2,k+4(π−1(n(r))) = ψF2,k(π−1(n)) · ψF2,4(π−1(π−1(n))(r + sn)).(8.52)

By the definitions we have the following identities

ϕπ,k+`(n(r)) = ψF2,4(π(n)(r + sn))[`](8.53)

ϕπ−1,k+`(n(r)) = ψF2,4(π−1(π−1(n))(r + sn))[`](8.54)
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for all n ∈ Zp, r ∈ 24, and ` ∈ 3. The condition that π satisfies (1) is thus equivalent to

ψF2,4(π(n)(0 + sn))[2] + ψF2,4(π(n)(2 + sn))[2] + ψF2,4(π(n)(1 + sn))[3] +(8.55)

ψF2,4(π(n)(3 + sn))[3] + ψF2,4(π(n)(5 + sn))[3] + ψF2,4(π(n)(7 + sn))[3] ≡
ψF2,4(π(n)(1 + sn))[2] + ψF2,4(π(n)(3 + sn))[2] + ψF2,4(π(n)(0 + sn))[3] +(8.56)

ψF2,4(π(n)(2 + sn))[3] + ψF2,4(π(n)(4 + sn))[3] + ψF2,4(π(n)(6 + sn))[3] ≡
ψF2,4(π(n)(0 + sn))[1] + ψF2,4(π(n)(1 + sn))[1] mod 2(8.57)

for all n ∈ Z2, and the condition that π−1 satisfies (1) is equivalent to

ψF2,4(π−1(n)(0 + sπ−1(n)))[2] + ψF2,4(π−1(n)(2 + sπ−1(n)))[2] + ψF2,4(π−1(n)(1 + sπ−1(n)))[3] +(8.58)

ψF2,4(π−1(n)(3 + sπ−1(n)))[3] + ψF2,4(π−1(n)(5 + sπ−1(n)))[3] + ψF2,4(π−1(n)(7 + sπ−1(n)))[3] ≡

ψF2,4(π−1(n)(1 + sπ−1(n)))[2] + ψF2,4(π−1(n)(3 + sπ−1(n)))[2] + ψF2,4(π−1(n)(0 + sπ−1(n)))[3] +(8.59)

ψF2,4(π−1(n)(2 + sπ−1(n)))[3] + ψF2,4(π−1(n)(4 + sπ−1(n)))[3] + ψF2,4(π−1(n)(6 + sπ−1(n)))[3] ≡

ψF2,4(π−1(n)(0 + sπ−1(n)))[1] + ψF2,4(π−1(n)(1 + sπ−1(n)))[1] mod 2(8.60)

for all n ∈ Z2 (note that since the condition must be satisfied for all n ∈ Z2 and π : Z2 → Z2 is
bijective, we may interchange n and π−1(n) which is what we did here). There are only finitely
many options for π(n) : Z2/2

4Z2 → Z2/2
4Z2 which satisfy Eqn. (8.45) (16384, to be precise) and

among those there are 8192 which also satisfy Eqn. (8.55) – (8.57) for at least one choice for
sn ∈ 24. It can be easily checked using a computer that any of those 8192 choices for π(n) satisfy

Eqn. (8.58) – (8.60) for all choices for sπ−1(n) ∈ 24. This completes the proof that if π satisfies

(1), then so does π−1. On the other hand, if π = π2 ◦ π1 (which is a 2-adic permutation by
Theorem 3.19) then

ψF2,k+4(π2 ◦ π1(n(r))) = ψF2,k(π2 ◦ π1(n)) · ψF2,4((π2)(π1(n)) ◦ (π1)(n)(r + sn))(8.61)

and thus

ϕπ2◦π1,k+`(n(r)) = ψF2,4((π2)(π1(n)) ◦ (π1)(n)(r + sn))[`](8.62)

for all n ∈ Zp, r ∈ 24, and ` ∈ 3. Thus, if we set π(n) := (π2)(π1(n)) ◦ (π1)(n) for all n ∈ Z2,
the condition that π2 ◦ π1 satisfies (1) reads exactly as Eqn. (8.55) – (8.57) and we can again
verify using a computer that if (π1)(n) and (π2)(π1(n)) are chosen among the 8192 possible options
mentioned above, then π(n) = (π2)(π1(n)) ◦ (π1)(n) satisfies Eqn. (8.55) – (8.57) for all choices for

sn ∈ 24. This completes the proof that if π1 and π2 satisfies (1), then so does π2 ◦ π1. Thus it
suffices to prove (1) for the case where G = F2, because a general π = πF,G can always be written

as π = π−1G,F2
◦ πF,F2

(cf. also Lemma 3.17 (3)).
If G = F2, then

ϕπ,k(n) = ψF2,k+1(πk+1(n))[k] = ψF2,k+1(ψF2,k+1
−1(ψF,k+1(n)))[k] = ψF,k+1(n)[k](8.63)

= D(F)[n][k].(8.64)

Thus (1) simplifies to

D(F)[n000][k + 2] + D(F)[n010][k + 2] + D(F)[n100][k + 3] + D(F)[n110][k + 3](8.65)

+ D(F)[n001][k + 3] + D(F)[n011][k + 3] ≡
D(F)[n000][k + 1] + D(F)[n100][k + 1] mod 2.(8.66)

The first step will be to prove the statement for the case k = 0. This can easily be done with
the aid of a computer, since Theorem 4.15 implies that it suffices to check the statement for all
24-polynomial 2-adic systems with degree in 4. The next step is to prove the auxiliary property

Fk(n)− Fk(n+ 2k+`) ≡ Fk(n+ 2k)− Fk(n+ 2k + 2k+`) mod 2`+2(8.67)
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for all k, ` ∈ N0 and n ∈ Z2 which we will do by induction on k. The statement is clearly true for
k = 0. Assume that it is also true for k ∈ N0. Then,

Fk(n)− Fk(n+ 2k+`+1) ≡ Fk(n+ 2k)− Fk(n+ 2k + 2k+`+1)(8.68)

≡ Fk(n+ 2k+1)− Fk(n+ 2k+1 + 2k+`+1) mod 2`+3.(8.69)

If A := Fk(n), B := Fk(n+ 2k+`+1), C := Fk(n+ 2k+1), and D := Fk(n+ 2k+1 + 2k+`+1) then

A−B − C +D ≡ 0 mod 2`+3(8.70)

by definition, and

A ≡ B ≡ C ≡ D mod 2(8.71)

A ≡ B mod 2`+1(8.72)

C ≡ D mod 2`+1(8.73)

by Theorem 4.8 (1). Consequently,

F(A)− F(B)− F(C) + F(D) =
1

2

d∑
i=1

ai(A
i −Bi − Ci +Di)(8.74)

where F[A%2] =
∑d
i=0 aix

i ∈ Z2[x] (note that for the whole theorem we define 00 := 1 and we
assume without loss of generality that F is in weak canonical form). Our goal is to show that
F(A)− F(B)− F(C) + F(D) ≡ 0 mod 2`+2 which obviously would follow if we could prove

Ai −Bi − Ci +Di ≡ 0 mod 2`+3(8.75)

for all i ∈ N which we will do by induction on i. The statement is clearly true for i = 1. Now
assume that it is also true for some i ∈ N and let S, T, U, V,W,X, Y ∈ Z2 such that,

2`+3S = A−B − C +D(8.76)

2`+3T = Ai −Bi − Ci +Di(8.77)

2`+1U = A−B(8.78)

2`+1V = C −D(8.79)

2W = B − C(8.80)

2`+1X = Ai −Bi(8.81)

2`+1Y = Ci −Di.(8.82)

It is easy to show that,

i = 1⇒ U = X(8.83)

i 6= 1⇒ (X%2 = 1⇒ B%2 = i%2 = 1⇒ U%2 = X%2)(8.84)

which implies

X + U

i−1∑
j=0

Bj(B − 2W )i−1−j ≡ 0 mod 2.(8.85)

If we let Z ∈ Z2 such that

2Z = X + U

i−1∑
j=0

Bj(B − 2W )i−1−j(8.86)

then

Ai+1 −Bi+1 − Ci+1 +Di+1 = 2`+3(TD +WZ + SCi + 2`−1X(U + V )) ∈ 2`+3Z2(8.87)

which completes the proof of Eqn. (8.67) and thus also the proof of Eqn. (8.75). Using the fact
that Eqn. (8.65) – Eqn. (8.66) is true for k = 0 together with Eqn. (8.67), we are now able to prove
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Eqn. (8.65) – Eqn. (8.66) for general k which will complete the proof of relation (1). We do so
again by using a computer to verify that

D[a][2] + D[c ][2] + D[b ][3] + D[d][3] + D[f][3] + D[h][3] ≡ D[a][1] + D[b ][1] mod 2.(8.88)

for all D ∈ D2(len4,block) satisfying Eqn. (8.65) – Eqn. (8.66) for k = 0 (if D(F) = D there) and
all a, b, c, d, e, f, g, h ∈ 24 satisfying

a 6≡ b 6≡ c 6≡ d 6≡ e 6≡ f 6≡ g 6≡ h mod 2(8.89)

a 6≡ c 6≡ e 6≡ g, b 6≡ d 6≡ f 6≡ h mod 22(8.90)

a 6≡ e, b 6≡ f, c 6≡ g, d 6≡ h mod 23(8.91)

a − c ≡ b − d ≡ c − e ≡ d − f ≡ e − g ≡ f − h ≡ g − a ≡ h− b mod 23(8.92)

a − e ≡ b − f ≡ c − g ≡ d − h ≡ e − a ≡ f − b ≡ g − c ≡ h− d mod 24.(8.93)

Note that the first three conditions correspond to the block property and the last two correspond
to Eqn. (8.67) for ` = 1 and ` = 2 if a, . . . , h = Fk(n000), . . . ,Fk(n111). This completes the proof
of relation (1).

To prove (2) we assume k ≥ 1 (we leave it to the reader to verify (2) for k = 0 by, for example,

using an adapted version of Lemma 4.14 to bound the degree of f), f(x) =
∑d
i=0 aix

i, and c ∈ Z2

and compute

f
(
n+ c2k

)
=

d∑
i=0

ai

i∑
j=0

(
i

j

)
cj2jkni−j(8.94)

=

d∑
i=0

ai

5∑
j=0

(
i

j

)
cj2jkni−j +

d∑
i=6

ai

i∑
j=6

(
i

j

)
cj2jkni−j(8.95)

=

5∑
i=0

ci2ik
f (i)(n)

i!
+ 2k+525k−5

d∑
i=6

ai

i∑
j=6

(
i

j

)
cj2(j−6)kni−j(8.96)

≡
5∑
i=0

ci2ik
f (i)(n)

i!
mod 2k+5(8.97)

where f (i) denotes the i-th derivative of f . Thus,

D(F2)[f(n+ c2k)][k, k + 4](8.98)

= D(F2)

[
5∑
i=0

ci2ik
f (i)(n)

i!

]
[k, k + 4](8.99)

= D(F2)

[
f(n)− f(n)%2k

2k
+ cf ′(n) +

(
k ≤ 4 ?

5∑
i=2

ci2(i−1)k
f (i)(n)

i!
: 0

)]
[4].(8.100)
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Consequently, (2) can be rewritten as

ϕf ,k+2(n000) + ϕf ,k+2(n010) + ϕf ,k+3(n000) + ϕf ,k+3(n010) +(8.101)

ϕf ,k+3(n001) + ϕf ,k+3(n011) ≡
0 mod 2⇔

D(F2)
[
f(n+ 0 · 2k)

]
[k + 2] + D(F2)

[
f(n+ 2 · 2k)

]
[k + 2] +(8.102)

D(F2)
[
f(n+ 0 · 2k)

]
[k + 3] + D(F2)

[
f(n+ 2 · 2k)

]
[k + 3] +

D(F2)
[
f(n+ 4 · 2k)

]
[k + 3] + D(F2)

[
f(n+ 6 · 2k)

]
[k + 3] ≡

0 mod 2⇔
D(F2) [u0] [2] + D(F2) [u0 + 2u1] [2] +(8.103)

D(F2) [u0] [3] + D(F2) [u0 + 2u1 + (k = 1 ? 8u2 : 0)] [3] +

D(F2) [u0 + 4u1] [3] + D(F2) [u0 + 6u1 + (k = 1 ? 8u2 : 0)] [3] ≡
0 mod 2

where u0 :=
(
(f(n)− f(n)%2k)/2k

)
%24 ∈ 24, u1 := f ′(n)%24 ∈ 24∩(2Z+1) (if f ′(n) ∈ 2Z2 then

f(n + 2k) ≡ f(n) + 2k+1f ′(n)/2 ≡ f(n) mod 2k+1 but n + 2k 6≡ n mod 2k+1 which contradicts
the assumption that f is a 2-permutation polynomial), and u2 = (f ′′(n)/2) %24 ∈ 24. It can easily
be verified that Eqn. (8.103) holds for all k ∈ {1, 2, 3, 4}, u0, u2 ∈ 24, and u1 ∈ 24 ∩ (2Z+ 1) which
completes the proof of (2).

The proofs of (3) and (4) can be done in an analogous fashion using again Eqn. (8.100). The
relations we need to verify in order to prove (3) are

D(F2) [u0] [1] + D(F2) [u0] [2] + D(F2) [u0 + 2u1 + (k = 1 ? 8u2 : 0)] [3] +(8.104)

D(F2) [u0 + 6u1 + (k = 1 ? 8u2 : 0)] [3] ≡
0 mod 2

for all k ∈ {1, 2, 3, 4}, u0, u2 ∈ 24, and u1 ∈ 24 ∩ (2Z + 1). To prove (4) we need to show that

(D(F2) [u0] [1] + D(F2) [u0 + 2u1] [2] + D(F2) [u0] [3] ∈ {0, 3} ? 0 : 1) ≡(8.105)

D(F2) [u0] [0] + D(F2) [u0 + u1 + (k = 1 ? 2u2 : 0)] [1] + D(F2) [u0] [2] +

D(F2) [u0 + 2u1 + (k = 1 ? 8u2 : 0)] [3] + D(F2) [u0] [4] + D(F2) [u0 + 4u1] [4] mod 2

for all k ∈ {1, 2, 3, 4}, u0, u2 ∈ 25, and u1 ∈ 25 ∩ (2Z + 1).
With the relations (1) – (4) at our disposal we are now able to prove the original statement of

the theorem. It turns out that the isomorphism classes of subtrees of the tree of cycles G(π) of some
2-adic permutation π which satisfies the relations given in (1) – (4) are exactly those indicated by
black boxes in Figure 6. Specifically, we will show,

S′2,4 ⊇ S′′2,4 :=
{

isomorphism class of T | π ∈ P2 such that π satisfies (1)(8.106)

T full 4-layer rooted subtree of (G(π), c(π))
}

T ′2,4 ⊇ T ′′2,4 :=
{

isomorphism class of T | π ∈ P2 such that π satisfies (1)(8.107)

T full 4-layer rooted subtree of (G(π), c(π))

|σ| > 1 for root (`, σ) of T
}

U ′2,4 ⊇ U ′′2,4 :=
{

isomorphism class of T | f ∈ P2 such that f satisfies (2), (3)(8.108)

T full 4-layer rooted subtree of (G(f), c(f))
}

V ′2,4 ⊇ V ′′2,4 :=
{

isomorphism class of T | f ∈ P2 such that f satisfies (2), (3), (4)(8.109)

T full 4-layer rooted subtree of (G(f), c(f))

|σ| > 1 for root (`, σ) of T
}
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where S′2,4, T ′2,4, U ′2,4, and V ′2,4 are the sets of those 71, 50, 83, and 7 isomorphism classes of 4-layer
rooted trees with out-degrees in {1, 2} which are claimed to form the sets S2,4, T2,4, U2,4, and
V2,4 respectively in Figure 6. Note that we already proved S′2,4 ⊆ S2,4, T ′2,4 ⊆ T2,4, U ′2,4 ⊆ U2,4,
V ′2,4 ⊆ V2,4 (by listing examples) and S2,4 ⊆ S′′2,4, T2,4 ⊆ T ′′2,4, U2,4 ⊆ U ′′2,4, V2,4 ⊆ V ′′2,4 (by showing
(1) – (4)).

We demonstrate the idea of proof by showing that tree 4-52 from Figure 6 does not belong to
S′′2,4. All other trees can be dealt with in an analogous fashion. Figure 7 shows a possible realization
of tree 4-52 and it is indicated in the caption that k = 4 and n ∈ {2, 8} violate relation (1). In the
following we will argue that any such possible realization of tree 4-52 necessarily violates relation
(1) and thus the isomorphism class of the tree cannot be contained in S′′2,4. We start by defining
the auxiliary function

ϕπ,k(n) : Z2 → {0, 1}(8.110)

n 7→
(
ϕidZ2 ,k

(n) + ϕπ,k(n)
)

%2

for all 2-adic permutations π and all k ∈ N0, where idZ2 is the identity function on Z2. Then,

ϕπ,k(n) = (D((x, x− 1))[n][k] = D((x, x− 1))[π(n)][k] ? 0 : 1)(8.111)

for all n ∈ Z2, i.e. ϕπ,k(n) = 0 if the k-th binary digits of n and π(n) coincide, and ϕπ,k(n) = 1
otherwise. Furthermore,

ϕπ,k(n) = ϕπ,k(n+ 2k)(8.112)

and if π = πF,G for some Z2-polynomial 2-adic systems F and G then,

ϕπ,k+1(n0) + ϕπ,k+1(n1) +(8.113)

ϕπ,k+2(n00) + ϕπ,k+2(n01) +

ϕπ,k+3(n100) + ϕπ,k+3(n110) + ϕπ,k+3(n101) + ϕπ,k+3(n111)

≡ 0 mod 2

ϕπ,k+1(n0) + ϕπ,k+1(n1) +(8.114)

ϕπ,k+2(n10) + ϕπ,k+2(n11) +

ϕπ,k+3(n000) + ϕπ,k+3(n010) + ϕπ,k+3(n001) + ϕπ,k+3(n011)

≡ 0 mod 2

for all k ∈ N0 and n ∈ Z2 by (1). Consequently,

`−1∑
i=0

(
ϕπ,k+1(n[i]0) + ϕπ,k+1(n[i]1) +(8.115)

ϕπ,k+2(n[i]d[i]0) + ϕπ,k+2(n[i]d[i]1) +

ϕπ,k+3(n[i]e[i]00) + ϕπ,k+3(n[i]e[i]10) + ϕπ,k+3(n[i]e[i]01) + ϕπ,k+3(n[i]e[i]11)
)

≡ 0 mod 2

for all ` ∈ N, n ∈ S(bnd2k , len`), and d, e ∈ S(bnd{0,1}, len`) with e = 1− d.
Using Eqn. (8.115) we will now show that tree 4-52 from Figure 6 does not belong to S′′2,4. For

this purpose let π ∈ P2 and k ∈ N0 such that (G(π), c(π)) contains a subtree T which is isomorphic
to tree 4-52. Note that in the example given in Figure 7 we have k = 4 and σ0 = (0, 2, 8, 10) (to
improve readability we omit the square brackets indicating equivalence classes). Let v1, . . . , v15
denote the remaining vertices of T , ordered in a way that is compatible (regarding graph isomorphy)
with the ordering given in Figure 7, and let σ0, . . . , σ15 denote the corresponding cycles. If we set
` := |σ0|, then |σ1| = |σ2| = |σ4| = |σ5| = `, |σ3| = |σ6| = |σ7| = |σ8| = |σ9| = |σ12| =
|σ13| = |σ14| = |σ15| = 2`, and |σ10| = |σ11| = 4` by Corollary 3.24. Furthermore, by the
defining properties of p-adic permutations (cf. Eqn. (3.93), Eqn. (3.94), and Theorem 3.22) we get
the following structural properties of the tables representing the binary expansions of the cycles
corresponding to the vertices of T (cf. Figure 7):
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• The block below the first row of every child vertex (gray and dark gray parts) is either a copy
of the whole table of its parent vertex (if it has a sibling) or two such copies next to each other
(if it is an only child).
• The first rows (light gray parts) of two siblings are ones’ complements of each other and the first

row of an only child has two parts of equal lengths which are ones’ complements of each other.
• On top of every “parent block” the first row of every child vertex v which has a sibling has an

even number c(v) of entries which differ from the respective following entries (cyclically) and the
first row of every only child has an odd number of such entries (in Figure 7 the numbers c(v) are

given next to the respective vertex). If v = (k, σ), c(v) =
∑l−1
i=0 ϕπ,k−1(σ[i]) by Eqn. (8.111).

Let n ∈ S(bnd2k , len`) such that σ0 = [([n[0]], . . . , [n[` − 1]])]∼σ (n is one of the sequences
(0, 2, 8, 10), (2, 8, 10, 0), (8, 10, 0, 2), (10, 0, 2, 8) in the example given in Figure 7). Furthermore, let
d ∈ S(bnd{0,1}, len`) be the corresponding top row of v1 (i.e. (0, 1, 0, 1), (1, 0, 1, 0), (0, 1, 0, 1), or
(1, 0, 1, 0) in the example given in Figure 7) and set e := 1− d. Since v3 is an only child and v4,
v6, v12, and v14 all have siblings, c(v3) + c(v4) + c(v6) + c(v12) + c(v14) is odd. But by definition
of n, d, and e, this sum is equal to the sum given in Eqn. (8.115) which is even if π satisfies (1).
Consequently, tree 4-52 cannot belong to S′′2,4 as claimed.

0011
0000
0101
0000

0101
0011
0000
0101
0000

1010
0011
0000
0101
0000

0110 1001
0101 0101
0011 0011
0000 0000
0101 0101
0000 0000

0011
1010
0011
0000
0101
0000

1100
1010
0011
0000
0101
0000

0111 1000
0110 1001
0101 0101
0011 0011
0000 0000
0101 0101
0000 0000

1000 0111
0110 1001
0101 0101
0011 0011
0000 0000
0101 0101
0000 0000

0100 1011
0011 0011
1010 1010
0011 0011
0000 0000
0101 0101
0000 0000

0000 1111
1100 1100
1010 1010
0011 0011
0000 0000
0101 0101
0000 0000

0111 0001 1000 1110
0111 1000 0111 1000
0110 1001 0110 1001
0101 0101 0101 0101
0011 0011 0011 0011
0000 0000 0000 0000
0101 0101 0101 0101
0000 0000 0000 0000

0010 1000
0100 1011
0011 0011
1010 1010
0011 0011
0000 0000
0101 0101
0000 0000

1101 0111
0100 1011
0011 0011
1010 1010
0011 0011
0000 0000
0101 0101
0000 0000

1010 1011
0000 1111
1100 1100
1010 1010
0011 0011
0000 0000
0101 0101
0000 0000

0101 0100
0000 1111
1100 1100
1010 1010
0011 0011
0000 0000
0101 0101
0000 0000

0000 0010 1111 1101
1000 0111 1000 0111
0110 1001 0110 1001
0101 0101 0101 0101
0011 0011 0011 0011
0000 0000 0000 0000
0101 0101 0101 0101
0000 0000 0000 0000

v0

v1: 4 v2: 4

v3: 3 v4: 2 v5: 2

v6: 2 v7: 2 v8: 3 v9: 1

v10: 3 v11: 3 v12: 4 v13: 4 v14: 6 v15: 6

Figure 7. A possible scenario for obtaining tree 4-52 from Figure 6. The vertices
v0, . . . , v15 correspond to the cycles σ0 = (0, 2, 8, 10) of π4, σ1 = (0, 18, 8, 26),
σ2 = (16, 2, 24, 10) of π5, σ3 = (0, 50, 40, 26, 32, 18, 8, 58), σ4 = (16, 2, 56, 42),
σ5 = (48, 34, 24, 10) of π6, σ6 = (0, 114, 104, 90, 96, 18, 8, 58), σ7 = (64, 50, 40,
26, 32, 82, 72, 122), σ8 = (16, 66, 56, 42, 80, 2, 120, 106), σ9 = (48, 34, 24, 10, 112, 98,
88, 74) of π7, and σ10 = (0, 242, 232, 218, 96, 18, 8, 186, 128, 114, 104, 90, 224, 146,
136, 58), σ11 = (64, 50, 40, 26, 32, 82, 200, 122, 192, 178, 168, 154, 160, 210, 72, 250),
σ12 = (16, 66, 184, 42, 208, 2, 120, 106), σ13 = (144, 194, 56, 170, 80, 130, 248, 234),
σ14 = (176, 34, 152, 10, 240, 98, 216, 202), σ15 = (48, 162, 24, 138, 112, 226, 88, 74) of
π8, written in base 2 with most significant digits being in the top rows. The tree
violates ϕπ,k+2(n000)+ϕπ,k+2(n010)+ϕπ,k+3(n100)+ϕπ,k+3(n110)+ϕπ,k+3(n101)+
ϕπ,k+3(n111) ≡ ϕπ,k+1(n000) + ϕπ,k+1(n100) mod 2 (relation (1)) for k = 4 and
n ∈ {2, 8} (1+0+0+0+1+0 6≡ 1+0 mod 2 and 0+0+1+1+0+0 6≡ 1+0 mod 2)
and can thus not be realized as a subtree of (G(πF,G), c(πF,G)) for any F,G ∈
F2(polyZ2

).

�
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Theorem 8.5 finally allows us to prove that there is a p-permutation polynomial f which cannot
be written as f = πF,G where F and G are Zp-polynomial p-adic systems as the following example
shows.

Example 8.6. Let f(x) = 2x3+x+2 ∈ Z2[x]. Then f is a 2-permutation polynomial by Lemma 8.1
and (G(f), c(f)) contains a subtree which is isomorphic to tree 4-15 from Figure 6. Thus f 6= πF,G
for all Z2-polynomial 2-adic systems F and G by Theorem 8.5.

F =(x, 3x+1)
G=(x−2, x+5)

F =(x, 3x+1)
G=(x, x−7)

F =(x, 5x+1)
G=(x−4, x+1)

F =(5x+6,−7x+1)
G=(−3x++8, 7x+9)

F =(−x+6, 3x+3)
G=(−5x−2,−x+7)

F =(x+4,−5x+9)
G=(7x+6, 5x+7)

F =(−9x−6,−7x+7)
G=(9x+4, 7x+7)

F =(−3x−8, 5x+3)
G=(7x−6,−x+5)

F =(5x4+5x3−5x2+7x+6,

−6x4+2x3−5x2−x)

G=(−6x4−2x3−6x2+9x+8

2x4+6x3+6x2−x+7)

F =(4x4+7x3+x2−5x,

−2x4−4x3+4x2−3x+3)

G=(4x4+3x3−x2−3x+2

8x4+3x3−4x−5)

F =(8x4−8x3−3x+4,

−x4−4x3−5x2+9x + 1)

G=(−7x4+x3−x2−3x+6

−5x4−x3+3x2+4x−3)

F =(−4x4+3x3−x2−x+2,

−x4−9x3−4x2−4x+2)

G=(−5x4+6x2−x+8

7x4+2x3−2x2−9x−2)

f =5x−6 f =x+4 f =3x−4 f =7x+4

f =−3x4+2x3−x2−9x−6 f =−3x4+4x3−x2+7x+6 f =x4+2x3−9x2+x−4 f =−3x4+2x3+9x2+x+4

f =4x4−4x2+x+8 f =−9x4−6x3−5x2+7x+2 f =4x4+4x2+3x−8 f =−4x4−2x3−3x−8

Figure 8. Several examples of 2-cycle trees of the form G(πF,G), respectively
G(f). Infinite subtrees rooted in black vertices are completely characterized due
to Corollary 8.7.
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In certain situations the following corollary of Theorem 8.5 allows for the characterization of
the complete (infinite) tree (G(πF,G), c(πF,G)) where F and G are Z2-polynomial 2-adic systems,
respectively (G(f), c(f)) where f is a 2-permutation polynomial.

Corollary 8.7 (No “Y” property). Let F,G ∈ F2(polyZ2
), f a 2-permutation polynomial, and

π = πF,G or π = f . Furthermore, let ` ∈ N and (v1, . . . , v`) be a (directed) path in G(π) with
dego(vi) = 1 (out-degree) for all i ∈ J1, `− 1K and dego(v`) = 2 (i.e. the graph induced by the
vertices v1, . . . , v` and the two children of v` looks like the letter “Y”). Then, ` ≤ 3.

Proof. Follows directly from the absence of black boxes underneath tree 4-2 in Figure 6. �

Informally, the previous corollary states that if a branch of a 2-cycle tree defined by Z2-polynomial
2-adic systems or by 2-permutation polynomials doesn’t split for 3 consecutive times, it will never
split. Thus, several of the trees shown in Figure 8 are completely characterized and others are
characterized at least in (infinite) parts.

9. Open questions and problems

To provide a possible roadmap for future investigations of p-adic systems in many different
directions we give a list, by no means exhaustive, of potentially interesting questions and problems
below. Whenever we refer to “classes of p-adic systems” (or, analogously, “classes of p-digit tables
with block property” or “classes of p-adic permutations”, cf. Section 3), we intend this to be
understood as any meaningful collection of p-adic systems that is described in this article or that
will be found during future investigations of p-adic systems. Examples of such classes are

• the class Fp(polyA,D) of A-polynomial p-adic systems with degree in D with some natural

choices for A and D, such as A = N,N0,Z,Q ∩ Zp,Zp,Qp, . . . and D = {d} , d,N, . . .
• p-adic systems defined by rational functions or power series, again with possible restrictions

to the occurring coefficients and degrees
• p-adic systems of the form FD (cf. Theorem 3.12) where D belongs to some class of p-digit

tables with block property, such as p-digit tables defined by sequences like the Thue-Morse
sequence (p. 18)
• p-adic systems of the form ΠG

−1(f) where G is a fixed p-adic system or itself ranging over
some class of p-adic systems and f belongs to some class of p-adic permutations, such as
◦ p-permutation polynomials with possible restrictions to the occurring coefficients and degrees
◦ p-adic permutations of the form πF,G with F and G again belonging to some classes of p-adic

systems
◦ finite products F1 ◦G . . . ◦G F` of p-adic systems from a certain class (cf. Theorem 3.19 et seq.)

with a fixed or bounded number ` of operands
◦ the closure under ◦G of any union of previously mentioned classes of p-adic permutations
• any of the above, with bounds on p (fixed value, range, only primes, etc.) or restrictions

imposed by demanding additional properties, such as being contractive, expansive, of mixed
type, avoiding, periodic, ultimately periodic, or aperiodic on some given set, etc.

With these examples of classes of p-adic systems at hand we are ready to provide the announced
list of open questions and problems.

1) Investigate p-adic systems from the perspective of them being number systems. For a p-
adic system F let S ?F T := ψF

(
ψ−1F (S) ? ψ−1F (T )

)
for all S, T ∈ S(bndp,¬fin) and any operation

? ∈ {+,−, ·}. If F = Fp, there are efficient algorithms for the computation of S ?F T . Are there
other choices for F for which useful algorithms can be found? Furthermore, if F = Fp there is no
known efficient algorithm for the computation of a prime factor of some n ∈ N from its F-digit
expansion ψF(n). Are there other choices for F for which efficient algorithms can be found?

2) Prove Conjecture 4.18 on the characterization of all (weakly) (p, r)-suitable rational func-
tions (cf. also Theorem 4.16 which proves a special case of the conjecture). More generally,
characterize all (weakly) (p, r)-suitable analytic functions. Generalize Theorem 5.12 and charac-
terize all (p, r)-avoiding polynomial functions in Qp[x], all (p, r)-avoiding rational functions, or
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even all (p, r)-avoiding analytic functions.

3) Example 4.2 demonstrates that the weak block property for p-fibred functions does not per-
mit a necessary and sufficient characterization that only considers the functions F[0], . . . ,F[p− 1]
independently from one another. Furthermore, Example 4.3 shows that there is a p-digit table
with weak block property that is the p-digit table of a p-fibred function but cannot be realized as
the p-digit table of a p-fibred function, whose entries are weakly (p, r)-suitable functions. Is there
a predicate P on the set of functions on Zp other than being weakly (p, r)-suitable which satisfies
that a p-digit table that is the p-digit table of a p-fibred function has the weak block property if
and only if it can be realized as the p-digit table of a p-fibred function whose entries satisfy the
predicate P?

4) For every p-adic permutation π and every p-adic system G there is a unique p-adic system F
such that π = πF,G (cf. Theorem 3.18). If π belongs to a certain subclass of p-adic permutations,
are there particularly “nice” choices for F and G? As examples consider the 2-adic permutations

f(x) = 10x2 − 3x+ 4(9.1)

g(x) = −2x2 + 7x− 6(9.2)

from the class of 2-permutation polynomials. If we set (cf. Example 5.5)

F1 :=

(√
200x2 − 60x− 71 + 3

10
,

√
200x2 − 60x− 91 + 3

10

)
(9.3)

F2 :=

(√
200x2 − 60x+ 90− 161 + 3

10
,

√
3(200x2 − 60x+ 90)− 161 + 3

10

)
(9.4)

F3 :=

(√
8x2 − 28x+ 25 + 7

2
,

√
8x2 − 28x+ 29 + 7

2

)
(9.5)

F4 :=

(√
8x2 − 28x+ 22 + 3 + 7

2
,

√
3(8x2 − 28x+ 22) + 3 + 7

2

)
(9.6)

G1 := (x, x)(9.7)

G2 := (x, 3x+ 1),(9.8)

then f = πF1,G1
= πF2,G2

and g = πF3,G1
= πF4,G2

. Under which conditions can F and G be
chosen to be both polynomial or from some other fixed class of p-adic systems?

5) Study the relation between p-adic systems and known sequences which have the (p, k)-block
property such as the (slightly modified) Thue-Morse sequence (cf. p. 18).

6) Investigate the group structure of
(
Fp, ◦G

)
, respectively

(
Pp, ◦

)
. What do the subgroups

gained from forming the closure of any of the classes of p-adic systems under ◦G look like? Are
any of the classes of p-adic systems already closed under ◦G? If F1 and F2 are p-adic systems,
what is the relation between the sets of periodic, ultimately periodic, or aperiodic points of F1,
F2, and their product F1 ◦G F2? Can FC = (x, 3x+ 1) be written as the product of other (possibly
polynomial) 2-adic systems whose sets of ultimately periodic points are known? More generally,
can specific p-adic systems or even all p-adic systems from a certain class be written as the product
of “nice” p-adic systems (e.g. whose sets of periodic, ultimately periodic, or aperiodic points are
known, which are contractive, expansive, avoiding, etc.)?

7) Hensel’s Lemma can be used to show that certain real or complex numbers that are defined

by polynomial equations (such as
√

2 or i) have counterparts within Zp for some 2 ≤ p ∈ N. Do
the generalizations of Hensel’s Lemma (Theorem 5.2 and Theorem 5.11) have similar applications,
possibly with respect to other classes of functions?

8) Further investigate trees of cycles. What are the possible finite subtrees of trees of cycles
of classes of p-adic permutations other than those covered by Theorem 8.5 (especially for p ≥ 3
and k ≥ 4 there)? Is it possible to characterize all trees of cycles of p-adic permutations of the
form πF,G, where F and G are Zp-polynomial p-adic systems, or π = f for some p-permutation
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polynomial f ∈ Zp[x] by extending the results of Theorem 8.5 (cf. Figure 9 below)? If π1 and π2 are
p-adic permutations, what can be said about the relation between the trees of cycles (G(π1), c(π1)),
(G(π2), c(π2)), and (G(π1 ◦π2), c(π1 ◦π2))? “Having identical trees of cycles” defines an equivalence
relation on the set of all p-adic systems. Theorem 8.4 gives an explicit construction of at least one
p-adic permutation from a given equivalence class (given by its shared tree of cycles). Find a full
characterization of all p-adic permutations in a given equivalence class. Does every equivalence
class contain elements of a specific class of p-adic systems and can they too be characterized? What
can be said about the relation between trees of cycles (G(πF,G), c(πF,G)) and the sets of periodic,
ultimately periodic, and aperiodic points of F and G? Conjecture 7.9 states that F2 = (x, x−1) and
FC = (x, 3x+1) have identical sets of ultimately periodic points (Q∩Z2), but F2 and F = (x, 5x+1)
do not (cf. also the “In particular” of Theorem 7.14). Can trees of cycles shed some light on why
this is the case (cf. the first three trees in the first row of Figure 8)?

Figure 9. The seven elements of V2,4 of Theorem 8.5. A directed edge from tree
S to tree T indicates that S can be extended by T by one layer. It can be seen that
tree 4-1 (on the bottom right) is a terminal object of the graph which is essentially
the statement of Corollary 8.7 on trees of cycles of 2-permutation polynomials (no
“Y” property). By studying V2,k for k ≥ 4 more terminal objects may be found
allowing for a full characterization of all trees of cycles (G(π), c(π)) where π = f
for some 2-permutation polynomial f . The corresponding tree representing the
extensibility of the 50-element set T2,4 has also only one terminal object (tree 4-1
again, which is also part of the statement of Corollary 8.7). Here too it may be
possible to find other terminal objects by analyzing T2,k for larger k.

9) Prove conjectures 7.7 – 7.12 or at least achieve first non-trivial results on the question of
ultimate periodicity of linear-polynomial p-adic systems of mixed type, such as proving

• D((x2 + x, x))[n] aperiodic for some concrete n ∈ Z
• D((x1000000p + x)p−1 · ((p− 1)x))[n] aperiodic for some concrete 2 ≤ p ∈ N and n ∈ Z
• D((1000001x, x))[n] aperiodic for some concrete n ∈ Z
• D(((p1000000p + 1)x)p−1 · ((p− 1)x))[n] aperiodic for some concrete 2 ≤ p ∈ N and n ∈ Z
• D((1/(p+ 1)x, (p− 1)x) · (x)p−2)[n] aperiodic for some concrete 2 ≤ p ∈ N and n ∈ Z
• uper-onQ∩Zp(((p+ 1)x) · (x)p−1) for some concrete 2 ≤ p ∈ N
• uper-onQ∩Zp((1/3x, 3x))

• uper-onQ∩Z2
((1/(p− 1)x) · ((p− 1)x)p−1) for some concrete 3 ≤ p ∈ N

(cf. also Corollary 7.21, Figure 4, and the subsequent list of examples of p-adic systems). Is
D((21/5x, 5/7x + 1))[27] ultimately periodic or aperiodic? If it is aperiodic, try to formulate the
correct version of the condition B ∈ Z in Conjecture 7.10 (cf. the discussion of the issue between
Conjecture 7.10 and Conjecture 7.11). Show [Q ∩ Zp 6⊆ UPerP](F) for every polynomial p-adic
system F which is not also (Q∩Zp)-polynomial (cf. Theorem 7.13 and the subsequent comment).

10) Prove Conjecture 7.15 and Conjecture 7.17 for p ≥ 3: the constant coefficients and the order
of the linear coefficients of (Q∩Zp)-linear-polynomial p-adic systems are irrelevant for the question
of ultimate periodicity on Q ∩ Zp. Considering the condition |B| < pp in Conjecture 7.9, prove
for p ≥ 2 that the signs of the linear coefficients of (Q ∩ Zp)-linear-polynomial p-adic systems are
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irrelevant for the question of ultimate periodicity on Q ∩ Zp. Do other classes of p-adic systems
(especially (Q ∩ Zp)-polynomial p-adic systems of larger degrees) have similar symmetries which
also fix the sets of periodic, ultimately periodic, or aperiodic points?

11) What can be said about the sets PerP(F), UPerP(F), and APerP(F) for a p-adic system F
from a specific class? Do these sets have any structure, symmetries, invariants, etc.? The second
generalization of Hensel’s Lemma (Theorem 5.11) reveals structural properties of the set PerP(F)
if F is an avoiding Zp-polynomial p-adic system, as the example following Theorem 5.12 shows: if
F = (7x3 − 4x2 + x − 6, 3x7 − x + 1, 5x4 + 4x − 1), then the set of periodic points of F is equal
to the set of all fixed points of arbitrary compositions of the polynomial functions F[0]/3, F[1]/3,
and F[2]/3. PerP(F) can be interpreted as a “generalized zero set” defined by three polynomials
in Q3[x].

12) Study any of the sets PerP(A), UPerP(A), APerP(A), PerP-Gen(A), UPerP-Gen(A), or
APerP-Gen(A) for any class A of p-adic systems (cf. the subsection “Generalizations” of Section 7).
Do these sets have any structure, symmetries, invariants, etc.? Theorem 7.14 and Theorem 7.16
provide first results in this direction: for F from the class A of (Q ∩ Z2)-linear-polynomial 2-adic
systems , UPerP(F) is invariant under the change of constant coefficients or the change of the order
of linear coefficients. What is

UPerP-Gen({F}) ∩ Fp(polyQ∩Zp),(9.9)

i.e. for which (Q ∩ Zp)-polynomial p-adic systems G does one get UPerP(F) = UPerP(G), where
F = (x, 5x+ 1), F = (5x, 5x+ 1), F = (x, x2 +x), F = (x2 +x, x2 +x), or F is some other concrete
(Q ∩ Zp)-polynomial p-adic system? This can be seen as the inverse problem of the previous
question 11): for a fixed “generalized zero set” Z ⊆ Zp, what can be said about the p-adic systems
from a certain class whose sets of periodic points are equal to the given Z? Is there a generalized
Galois theory in this setting?

13) If F is a (Q ∩ Zp)-linear-polynomial p-adic system, then [UPerP ⊆ Q ∩ Zp](F) by the “In
particular” part of Corollary 7.3 (cf. also Conjecture 7.10 on when we have [UPerP = Q∩Zp](F)).
Find any such F and a p-adic integer n whose F-digit expansion is aperiodic and equal to any
known sequence in S(bndp,¬fin) (like the real base p expansion of some irrational number or the

Thue-Morse sequence). Specifically, what is π(x,3x+1),(x,x−1)(
√

17) (cf. Example 5.5)?

14) For every 2 ≤ p ∈ N, every countable subset A of Zp and every finite p-bounded sequence
S there is a p-adic system F such that the periodic part of the F-digit expansion of every n in
A is cyclically equivalent to S (cf. the definition of ∼σ on p. 21). In order to find such an F,
pick any countable subset B of Zp which is dense in Zp and construct a p-digit table D by fixing
an ultimately periodic D-digit expansion with period S (or an aperiodic D-digit expansion if S
is empty) for the elements of A ∪ B one at a time, in a way that is compatible (regarding the
block property) with what has already been fixed. After D has been constructed, let E ∈ Dp be
its unique extension by Lemma 3.15 and let F := FE be the p-adic system corresponding to E
according to Theorem 3.12. For specific choices for A and S, are there “nice” p-adic systems F with
the described property? As an example consider the non-standard ternary (cf. [54, 27]) system
F = (x, x + 1, x − 1) which has the property that all integers (i.e. A = Z) have an ultimately
periodic F-digit expansion with period (0) (i.e. S = (0)). This can be proven by verifying that the
F-sequences of all integers n with |n| ≤ 2 are ultimately periodic with period (0) (cf. the definition
of M in the proof of Theorem 7.19 and the “In particular” part of Lemma 6.2 (1)). The “niceness”
of F in this case is of course given by the fact that F is Z-linear-polynomial. Is there a “nice”
(from a specific class, closed on the integers, etc.) p-adic system F which has the property that all
rational numbers (i.e. A = Q∩Zp) have an ultimately periodic F-digit expansion with period (0)?

15) If F and G are concrete p-adic system systems and f is a concrete p-permutation polynomial,
plotting any of the permutations πk of pk (we identify Zp/pkZp and pk) for π := πF,G or π = f
often reveals intriguing patterns, as Figure 10 shows. Study such permutations with regard to
randomness and discrepancy (see [16] for an introduction to discrepancy theory and notions of
randomness).
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Figure 10. The permutation π12 : 212 → 212 for π = π(x,3x+1),(x,x−1) (top left)

and π = 2x2 + 3x+ 2 (top right). The respective images in the bottom row show
the permutations inv ◦π12 : 212 → 212 where inv : 212 → 212 inverts the 12 digits
of the binary expansion of its input (e.g. inv(318) = 1992).
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[2] S. Akiyama, H. Brunotte, A. Pethő, and J. M. Thuswaldner, Generalized radix representations and
dynamical systems. II, Acta Arith., 121 (2006), pp. 21–61.

[3] , Generalized radix representations and dynamical systems. III, Osaka J. Math., 45 (2008), pp. 347–374.
[4] , Generalized radix representations and dynamical systems. IV, Indag. Math. (N.S.), 19 (2008), pp. 333–

348.
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[56] , On the characterization of Pethő’s Loudspeaker, Publ. Math. Debrecen, 87 (2015).
[57] , Shift radix systems and their generalizations, PhD thesis, University of Leoben, Leoben, 2015.

[58] G. Wirsching, The Dynamical System Generated by the 3n+ 1 Function, Springer, Heidelberg, 1998.

[59] E. Yurova, On ergodicity of p-adic dynamical systems for arbitrary prime p, P-Adic Numbers Ultrametric
Anal. Appl., 5 (2013), pp. 239–241.

[60] E. Yurova Axelsson and A. Khrennikov, Generalization of Hensels lemma, finding the roots of p-adic

Lipschitz functions, J. Number Theory, 158 (2016), pp. 217–233.

Appendix

p-adic pseudo-valuations. For 2 ≤ p ∈ N let

νp : Qp → Z ∪ {∞} .(A.1)

x 7→


max

{
k ∈ N0 | x/pk ∈ Zp

}
if x ∈ Zp \ {0}

−min
{
k ∈ N | xpk ∈ Zp

}
if x ∈ Qp \ Zp

∞ if x = 0

If p is a prime then νp is the p-adic valuation. If p is not a prime then νp is not a valuation as the
multiplicative property νp(ab) = νp(a) + ν(b) is violated in general (not only due to the existence
of zero divisors but even if p is a prime power: ν4(2 · 2) = 1 6= 0 = ν4(2) + ν4(2)). It is well-known
that if q1, . . . , qs ∈ P are the distinct prime factors of 2 ≤ p ∈ N then Qp and Qq1 × · · · ×Qqs are
isomorphic with an isomorphism given by

ϕp : Qp → Qq1 × · · · ×Qqs .(A.2)

∞∑
k=j

akp
k 7→

 ∞∑
k=j

ak(p/q1)kqk1 , . . . ,

∞∑
k=j

ak(p/qs)
kqks

 =

 ∞∑
k=j1

a
(1)
k qk1 , . . . ,

∞∑
k=js

a
(s)
k qks


We thus may extend the q-adic valuation νq to Qp for every q ∈ {q1, . . . , qs} by

νq : Qp → Z ∪ {∞} .(A.3)

∞∑
k=j

akp
k 7→ νq

 ∞∑
k=j

ak(p/q)kqk


νp and νq1 , . . . , νqs satisfy the following properties (x, y ∈ Qp, k ∈ Z):

• νp(x) = inf {bνq(x)/νq(p)c | q ∈ {q1, . . . , qs}}
• x = 0⇔ νp(x) =∞⇔ ∀ q ∈ {q1, . . . , qs} : νq(x) =∞
• x ∈ pkZp ⇔ νp(x) ≥ k ⇔ ∀ q ∈ {q1, . . . , qs} : νq(x) ≥ νq(p)k
• ∀ q ∈ {q1, . . . , qs} : νq(xy) = νq(x) + νq(y)
• ∀ q ∈ {q1, . . . , qs} : νq(x+ y) ≥ inf {νq(x), νq(y)}
• ∀ q ∈ {q1, . . . , qs} : νq(x) 6= νq(y) ∨ νq(x) =∞∨ νq(y) =∞⇒ νq(x+ y) = inf {νq(x), νq(y)}.
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List of theorems.

Lemma 3.1 (p. 9): Every p-fibred function has a unique canonical form. ∼p is an equivalence
relation on Fp and the canonical forms constitute a complete set of representatives.

Lemma 3.2 (p. 9): A sufficient condition for the weak block property and a necessary and suf-
ficient condition for the block property of closed p-fibred functions when interpreted as ordinary
functions.

Example 3.3 (p. 10): The sufficient condition for the weak block property in Lemma 3.2 neither
is necessary.

Theorem 3.4 (p. 11): Characterization of all p-fibred functions which define a given p-digit table
D in terms of the sets D(n), n ∈ dom(D).

Lemma 3.5 (p. 11): If D is a p-digit table of length k which has the block property at k, then
every given sequence of length k with entries in p can be found exactly once among the initial
parts of length k of the D-digit expansions of any CRS modulo pk.

Lemma 3.6 (p. 12): If a p-digit table whose domain contains a CRS modulo p` has the block
property at ` and the weak block property at k ≤ `, then it also has the block property at k.

Theorem 3.7 (p. 12): An analysis of the structure of the sets D(n) for a p-digit table D under
the assumption of various (weak) block properties.

Corollary 3.8 (p. 14): Simplifying the computation of F-digit expansions for a closed p-fibred
function F which has various (weak) block properties.

Lemma 3.9 (p. 15): If D is an infinite p-digit table with block property, then the function mapping
an element of the domain of D to its D-digit expansion is injective.

Corollary 3.10 (p. 15): For a p-adic system F the lengths of the initial and periodic parts of the
F-sequence and the F-digit expansion of some p-adic integer coincide.

Lemma 3.11 (p. 16): If D is an infinite p-digit table with domain Zp and block property, then
the function mapping an element of Zp to its D-digit expansion is bijective (infinite version of
Lemma 3.5 and specialization of Lemma 3.9). In particular, the sets D(n) are singletons.

Theorem 3.12 (p. 16): For every infinite p-digit table with domain Zp and block property D
there is a unique p-fibred function F in canonical form whose F-digit table coincides with D.

Example 3.13 (p. 16): An example of a p-digit table with domain Zp and weak block property
which cannot be expressed as the F-digit table of any p-fibred function F.

Lemma 3.14 (p. 17): If two p-digit tables with weak block property and equal domain coincide
on some subset of their shared domain that is dense in Zp, then the two p-digit tables coincide as
a whole.

Lemma 3.15 (p. 17): Explicit construction of the unique p-digit table E with domain Zp and
weak block property which extends a given p-digit table D with weak block property, whose do-
main contains a subset which is dense in Zp.
Corollary 3.16 (p. 17): If a p-fibred function G with weak block property extends to all of Zp
another p-fibred function F whose domain is dense in Zp, it does so in accordance with the unique
extension of the corresponding p-digit tables as given in Lemma 3.15.

Lemma 3.17 (p. 19): Basic properties of permutations of Zp of the form πF,G if F and G are
p-adic systems.

Theorem 3.18 (p. 20): For every p-adic permutation π and every p-adic system G there is a
unique (up to ∼p) p-adic system F so that π = πF,G.

Theorem 3.19 (p. 20): The set of all p-adic permutations forms a subgroup of the set of all
permutations of Zp with respect to composition.

Lemma 3.20 (p. 20): Basic properties of the isomorphism ΠG which transports the group struc-
ture on the set of p-adic permutations to the set of p-adic systems and an explicit formula for the
resulting group operation on p-adic systems.
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Example 3.21 (p. 21): An example illustrating the group operation on p-adic systems analyzed
in Lemma 3.20.

Theorem 3.22 (p. 21): If π is a p-adic permutation, then every cycle S of πk splits into up to p
cycles of πk+1 which are congruent to S modulo pk (entry-wise, cyclically) and every cycle of πk+1

is a “child” of some cycle of πk in this way.

Corollary 3.23 (p. 22): If π is a p-adic permutation, then the prime factors of the lengths of all
cycles of πk are contained in p.

Corollary 3.24 (p. 22): Basic properties of the edge labeled graph (G(π), c(π)) defined by a p-adic
permutation π.

Theorem 4.1 (p. 24): A sufficient condition for the weak block property and a necessary and
sufficient condition for the block property of a closed p-fibred function F in terms of weak (p, r)-
suitability and (p, r)-suitability of the functions F[r], r ∈ p.
Example 4.2 (p. 24): The weak block property of a closed p-fibred function F neither does (like
the block property) permit a necessary and sufficient characterization that only considers the func-
tions F[0], . . . ,F[p− 1] independently from one another.

Example 4.3 (p. 24): An example of a p-digit table with weak block property which is the p-digit
table of a p-fibred function but cannot be realized as the p-digit table of a p-fibred function whose
entries are weakly (p, r)-suitable functions.

Corollary 4.4 (p. 25): A stronger version of statement (3) of Corollary 3.8, which loosens the
condition that F must have the block property at k to the weak block property S at k.

Lemma 4.5 (p. 26): Basic properties of (p, r)-suitable functions.

Corollary 4.6 (p. 26): A p-adic system F is surjective and p-to-one (as a function on Zp) and its
restriction F|r+pZp , r ∈ p, is surjective and one-to-one.

Theorem 4.7 (p. 26): If g is a weakly (p, r)-suitable function at k satisfying gcd(p, g(n)%p) = 1
for all n in its domain, then the product fg is (weakly) (p, r)-suitable at k if and only if f is
(weakly) (p, r)-suitable at k.

Theorem 4.8 (p. 28): Characterization of (weakly) (p, r)-suitable polynomial functions in Zp[x].

Lemma 4.9 (p. 30): Characterization of (p, r)-integral polynomial functions in Qp[x].

Theorem 4.10 (p. 30): Characterization of (weakly) (p, r)-suitable polynomial functions in Qp[x].

Corollary 4.11 (p. 36): Every Zp-polynomial p-fibred function has the weak property S and it
has the block property if and only if it has the block property at k for any k ≥ 2.

Corollary 4.12 (p. 36): For every polynomial p-fibred function F a K ∈ N0 is constructed such
that F has the weak property S if and only if it has the weak property S at K + 1 and F has the
block property if and only if it has the block property at K + 3.

Corollary 4.13 (p. 37): The p-digit table of the extension of a p-fibred function F with domain Z
defined by polynomial functions in Z[x] obtained by extending the domain from Z to Zp coincides
with the unique extension of the p-digit table of F as given by Lemma 3.15.

Lemma 4.14 (p. 37): Construction of a polynomial g ∈ pk[x] with degree less than k which
coincides modulo pk on r + pZp with a given polynomial f ∈ Zp[x].

Theorem 4.15 (p. 38): Construction of a pk-polynomial p-fibred function G with degree in k
satisfying D(F)JkK = D(G)JkK for a given Zp-polynomial p-fibred function F.

Theorem 4.16 (p. 38): Characterization of (weakly) (p, r)-suitable rational functions f = g/h
with g, h ∈ Zp[x] and gcd(p, h(r)%p) = 1 for all n ∈ r + pZp.
Corollary 4.17 (p. 39): Every p-fibred function defined by rational functions of the kind treated
in Theorem 4.16 has the weak property S and it has the block property if and only if it has the
block property at k for any k ≥ 2.

Conjecture 4.18 (p. 39): Conjecture on the characterization of (weakly) (p, r)-suitable ratio-
nal functions f = g/h with g, h ∈ Zp[x] but without the condition gcd(p, h(r)%p) = 1 for all
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n ∈ r + pZp.
Lemma 5.1 (p. 40): Hensel’s Lemma: a polynomial f ∈ Zp[x] has a unique root in r + pZp if
f(r)%p = 0 and f ′(r)%p 6= 0.

Theorem 5.2 (p. 40): Generalization of Hensel’s Lemma: a general function f ∈ Zp[x] has a
unique root in r + pZp if f(r + pZp) ⊆ pZp and f is (p, r)-suitable.

Lemma 5.3 (p. 40): The sum of a function which is weakly (p, r)-suitable at k and a linear poly-
nomial is weakly (p, r)-suitable at k, and the sum of a function which is (p, r)-suitable at k and a
linear polynomial whose linear coefficient is in pZp is (p, r)-suitable at k.

Example 5.4 (p. 41): Lemma 5.3 cannot be generalized by loosening the condition “(p, r)-suitable
at k” by requiring “(p, r)-suitable at k” instead.

Example 5.5 (p. 41): Examples of applications of Hensel’s Lemma to prove that certain real or
complex numbers defined by polynomial equations have counterparts within Zp.
Theorem 5.6 (p. 42): Stronger version of Theorem 5.2: A general function f ∈ Zp[x] which maps
r+pZp to pZp is (p, r)-suitable if and only if f has a unique root a in r+pZp and gcd (p, g(r)%p) = 1,
where g ∈ Zp[x] so that f(x) = (x− a)g(x).

Example 5.7 (p. 42): Even if p is prime the condition gcd (p, g(r)%p) = 1 in Theorem 5.6 cannot
be dropped.

Lemma 5.8 (p. 43): Relation between the application of a p-fibred rational function R and the
corresponding p-fibred function F := int(R|Zp∩dom(R)).

Lemma 5.9 (p. 44): Relation between the application of a p-fibred rational function R and the
corresponding p-fibred function F := int(R|Zp) under the condition that R is avoiding.

Example 5.10 (p. 45): The assumptions of Lemma 5.9 cannot be loosened, even if the entries of
R are polynomials.

Theorem 5.11 (p. 45): Generalization of Hensel’s Lemma: under natural technical conditions,
the function RD has a unique fixed point in Zp for every avoiding p-fibred rational function R and
every sequence of digits D.

Theorem 5.12 (p. 46): Characterization of (p, r)-avoiding polynomial functions in Zp[x].

Lemma 6.1 (p. 49): Characterization of when two p-adic systems F and G are periodic, ultimately
periodic, or aperiodic on the same sets using πF,G.

Lemma 6.2 (p. 49): Consequences of a p-fibred function being contractive or expansive for peri-
odic and ultimately periodic digit expansions.

Theorem 6.3 (p. 50): (Q ∩ Zp)-polynomial p-adic systems where each polynomial is either of
degree 2 or higher or has a linear coefficient greater than p in absolute value, are expansive, and
(Q ∩ Zp)-polynomial p-adic systems that are contractive are linear-polynomial.

Lemma 7.1 (p. 51): Analysis of (weak) (p, r)-suitability and (p, r)-avoidance of linear polynomi-
als.

Theorem 7.2 (p. 51): Explicit formula for RD(n) if R is a linear-polynomial p-fibred rational
function.

Corollary 7.3 (p. 52): Explicit formula for the unique p-adic integer having a given ultimately
periodic F-digit expansion for a given linear-polynomial p-adic system F.

Corollary 7.4 (p. 53): Explicit formula for the unique element of p|D| having a given initial F-digit
expansion for a given linear-polynomial p-adic system F.

Corollary 7.5 (p. 54): Explicit construction of all linear-polynomial p-adic systems F for which
a given p-adic integer n has a given ultimately periodic digit expansion D.

Corollary 7.6 (p. 55): Explicit construction of all pairs (F, n) of linear-polynomial p-adic systems
and p-adic integers for which a given ultimately periodic digit expansion D coincides with the
F-digit expansion of n.

Conjecture 7.7 (p. 59): The original Collatz conjecture.
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Conjecture 7.8 (p. 59): Generalization of the Collatz conjecture: FC is ultimately periodic on
Q ∩ Z2 and ultimately periodic orbits of natural numbers end up at 1.

Conjecture 7.9 (p. 59): Variant of the the Collatz conjecture for Z-linear-polynomial p-adic sys-
tems.

Conjecture 7.10 (p. 60): Variant of the the Collatz conjecture for (Q ∩ Zp)-linear-polynomial
p-adic systems.

Conjecture 7.11 (p. 62): Variant of the the Collatz conjecture for (Q ∩ Zp)-polynomial p-adic
systems.

Conjecture 7.12 (p. 62): Variant of the the Collatz conjecture for polynomial p-adic systems.

Theorem 7.13 (p. 63): Conjecture 7.11 (1) and Conjecture 7.12 (1) are equivalent.

Theorem 7.14 (p. 63): Explicit formula for πF,G(n) if F and G are linear-polynomial 2-adic
systems with matching linear coefficients, which implies that the constant coefficients of (Q∩Z2)-
linear-polynomial 2-adic systems have no influence on the question of whether all rational numbers
have ultimately periodic digit expansions.

Conjecture 7.15 (p. 66): Conjecture that the constant coefficients of (Q∩Zp)-linear-polynomial
p-adic systems have no influence on the question of whether all rational numbers have ultimately
periodic digit expansions.

Theorem 7.16 (p. 67): Explicit formula for πF,σ,G(n) if F and G are linear-polynomial 2-adic
systems with swapped linear coefficients, which implies that the order of the linear coefficients of
(Q∩Z2)-linear-polynomial 2-adic systems has no influence on the question of whether all rational
numbers have ultimately periodic digit expansions.

Conjecture 7.17 (p. 68): Conjecture that the order of the linear coefficients of (Q ∩ Zp)-linear-
polynomial p-adic systems has no influence on the question of whether all rational numbers have
ultimately periodic digit expansions.

Example 7.18 (p. 68): Application of the formulas for πF,G(n) and πF,σ,G(n) given in Theo-
rem 7.14 and Theorem 7.16.

Theorem 7.19 (p. 68): Characterization of contractive, expansive, and mixed type (Q ∩ Zp)-
linear-polynomial p-adic systems.

Corollary 7.20 (p. 70): Answer to the question of ultimate periodicity on Q ∩ Zp for contractive
Z-linear-polynomial- and for expansive (Q ∩ Zp)-linear-polynomial p-adic systems.

Corollary 7.21 (p. 70): Summary of results on the question of ultimate periodicity on Q∩Zp for
(Q ∩ Zp)-polynomial p-adic systems.

Lemma 8.1 (p. 73): Characterization of p-permutation polynomials.

Theorem 8.2 (p. 73): A polynomial f ∈ Zp[x] is a p-permutation polynomial if and only if it is
a p-adic permutation.

Example 8.3 (p. 73): There are p-adic permutations defined by Z-linear-polynomial p-adic sys-
tems which are neither p-permutation polynomials.

Theorem 8.4 (p. 73): Every p-cycle tree can be realized as the tree of cycles of some p-adic
permutation.

Theorem 8.5 (p. 77): Characterization of the sets of all isomorphism classes of trees with up
to 4 layers which may occur as subtrees of trees of cycles of 2-adic permutations defined by Z2-
polynomial 2-adic systems or by 2-permutation polynomials.

Example 8.6 (p. 88): There are p-permutation polynomials which are neither p-adic permutations
defined by Zp-polynomial p-adic systems.

Corollary 8.7 (p. 89): No “Y” property: the trees of cycles of 2-adic permutations defined by Z2-
polynomial 2-adic systems or by 2-permutation polynomials do not contain “Y”-shaped subtrees.
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List of symbols in order of first appearance.

A(P) elements of A satisfying predicates in P 5
Ja, bK integer interval {n ∈ Z | a ≤ n ≤ b} 5
a integer interval J0, a− 1K 5
a integer interval J0, aK 5
S class of sequences 6
|S| length/size of S 6
S[A] subsequence of S, indices in A 6
S[i, j] subsequence of S, indices in Ji, jK 6
lenA(S) S has length in A 6
fin(S) S is finite 6
emp(S) S is empty 6
bndA(S) S is A-bounded 6
preT (S) S has prefix T 6
sufT (S) S has suffix T 6
S · T product/concatenation of S and T 6
Sn n-th power of S 6
S∞ infinite periodic sequence with period S 6
I (S) initial part of S 6
P (S) periodic part of S 6
per(S) S is (purely) periodic 6
uper(S) S is ultimately periodic 6
aper(S) S is aperiodic 6
f(S) entry-wise application of f to S 6
S class of sequence tables 6
dom(S) domain of S 6
|S| length/size of S 6
S[n] n-th row of S/S-sequence of n 6
S|A restriction of S to A 6
SJAK subtable of S, indices in A 6
SJi, jK subtable of S, indices in Ji, jK 6
S · T product/concatenation of S and T 6
Sn n-th power of S 6
S∞ infinite periodic table with period S 6
f(S) entry-wise application of f to S 6
domA(S) S has domain A 6
lenA(S) S has length in A 6
fin(S) S is finite 6
emp(S) S is empty 6
bndA(S) S is A-bounded 6
Dp set of p-digit tables 7
D[n] D-digit expansion of n 7
D[n][k] k-th digit of n with respect to D 7
w-blockK(D) D has the weak block property at K 7
w-block(D) D has the weak block property 7
blockK(D) D has the block property at K 7
block(D) D has the block property 7
Fp set of p-fibred functions 7
dom(F) domain of F 7
F(n) application of F to n 7
% modulo function 7
F|A restriction of F to A 7
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F ∼p G equivalence of F and G 7
canf(F) F is in canonical form 8
w-canf(F) F is in weak canonical form 8
domA(F) F has domain A 8
bndA(F) F is A-bounded 8
closed(F) F is closed 8
S(F) F-sequence table 8
D(F) F-digit table 8
S(F)[n] F-sequence of n 8
D(F)[n] F-digit expansion of n 8
D(F)[n][k] k-th digit of n with respect to F 8
w-blockK(F) F has the weak block property at K 8
w-block(F) F has the weak block property 8
blockK(F) F has the block property at K 8
block(F) F has the block property 8
Fp set of p-adic systems 8
FC Collatz transformation 8
F2 binary transformation 8
(P (x) ? f(x) : g(x)) conditional function 8
Zp set of functions with p-block property 10
Dp set of p-digit tables with block property 11
D(n) application of D to n 11
P(A) powerset of n 11
R(n) application of R to n 11
FD unique p-adic system defined by given p-digit table D 16
w-blockp,k(S) S has the weak (p, k)-block property 18
blockp,k(S) S has the (p, k)-block property 18
ψF(n) F-digit expansion of n 18
πF,G(n) number whose G-digit expansion equals the F-digit expansion of n 18
Fp p-ary transformation 18
Pp set of p-adic permutations 19
πk π modulo pk 19
ΠG group isomorphism between Fp/∼p and Pp with respect to G 20
◦G group operation on Fp transported by ΠG 20
σ(S, s) cyclic shift of S by s steps 21
Σ(π) set of cycles of π 21
S ∼σ T cyclical equivalence of S and T 21
|[S]∼σ | length/size of [S]∼σ 21
V(π) set of vertices of tree of cycles of π 22
E(π) set of edges of tree of cycles of π 22
G(π) tree of cycles of π 22
c(π) edge labeling of tree of cycles of π 22
w-suitp,r,K(f) f is weakly (p, r)-suitable at K 23
w-suitp,r(f) f is weakly (p, r)-suitable 23
suitp,r,K(f) f is (p, r)-suitable at K 23
suitp,r(f) f is (p, r)-suitable 23
w-block-FK(D) D has the weak block property F at K 25
w-block-F(D) D has the weak block property F 25
w-block-SK(D) D has the weak block property S at K 25
w-block-S(D) D has the weak block property S 25
w-block-FK(F) F has the weak block property F at K 25
w-block-F(F) F has the weak block property F 25
w-block-SK(F) F has the weak block property S at K 25
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w-block-S(F) F has the weak block property S 25
integralp,r(f) f is (p, r)-integral 30
polyA,D(F) F is A-polynomial with degree in D 36
polyA(F) F is A-polynomial 36
poly(F) F is polynomial 36
lin-polyA(F) F is A-linear-polynomial 36
lin-poly(F) F is linear-polynomial 36
Rp set of p-fibred rational functions 42
dom(R) domain of R 42
R|A restriction of R to A 42
domA(R) R has domain A 42
bndA(R) R is A-bounded 42
closed(R) R is closed 42
integral(R) R is integral 42
RD(x) application of RD to x 42
SD(R) R-sequence table with respect to D 42
SD(R)(n) R-sequence of n with respect to D 42
polyA,D(R) R is A-polynomial with degree in D 43
polyA(R) R is A-polynomial 43
poly(R) R is polynomial 43
lin-polyA(R) R is A-linear-polynomial 43
lin-poly(R) R is linear-polynomial 43
int(R) p-fibred function corresponding to R 43
avoidp,r(f) f is (p, r)-avoiding 44
avoid(R) R is avoiding 44
avoid(F) F is avoiding 44
PerP(F) set of periodic points of F 48
UPerP(F) set of ultimately periodic points of F 48
APerP(F) set of aperiodic points of F 48
[E](F) F satisfies E 48
per-onA(F) F is periodic on A 48
uper-onA(F) F is ultimately periodic on A 48
aper-onA(F) F is aperiodic on A 48
contr(F) F is contractive 49
exp(F) F is expansive 49
mix(F) F is of mixed type 49
d-contr(F) F contracts denominators 49
d-exp(F) F expands denominators 49
d-mix(F) F mixes denominators 49
AF(D) constant coefficient of p|D|RD(x) ∈ Zp[x] 51
BF(D) linear coefficient of p|D|RD(x) ∈ Zp[x] 51
πF,σ,G(n) variant of πF,G(n) involving swapping of digits as specified by σ 66
PerP(A) union of sets of periodic points of F for all F ∈ A 72
UPerP(A) union of sets of ultimately periodic points of F for all F ∈ A 72
APerP(A) union of sets of aperiodic points of F for all F ∈ A 72
fk f modulo k 73
ψF,k ψF modulo k 76
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