
Constrained Triangulations, Volumes of Polytopes,

and Unit Equations

Michael Kerber, Robert Tichy, Mario Weitzer

Abstract

Given a polytope P in Rd and a subset U of its vertices, is there a triangulation of P using d-simplices
that all contain U? We answer this question by proving an equivalent and easy-to-check combinatorial
criterion for the facets of P. Our proof relates triangulations of P to triangulations of its “shadow”, a
projection to a lower-dimensional space determined by U . In particular, we obtain a formula relating
the volume of P with the volume of its shadow. This leads to an exact formula for the volume of a
polytope arising in the theory of unit equations.

1 Introduction

Problem statement and results. Let P be a convex polytope in Rd, that is, the convex hull of a
finite point set V , and let U be a subset of V . We ask for a triangulation of (the interior of) P with the
property that every d-simplex in the triangulation contains all points of U as vertices, calling it a U -spinal
triangulation. A simple example is the star triangulation of P (Figure 1), where all d-simplices contain a
common vertex p, and U is the singleton set consisting of that point. Another example is the d-hypercube
with U being a pair of opposite points (Figure 2). Indeed, the hypercube can be triangulated in a way that
all d-simplices contain the space diagonal spanned by U [18, 12].

−→

Figure 1: A star triangulation of a hexagon.

−→

Figure 2: A U -spinal triangulation of a cube, where
U consists of the two vertices on a space diagonal.

We are interested in what combinations of P and U admit spinal triangulations. Our results provide a
simple combinatorial answer for this question: Denoting by n the cardinality of U , a U -spinal triangulation
of P exists if and only if each facet of P contains at least n− 1 vertices of U . In that case, we call U a spine
of P. More generally, we provide a complete characterization of spinal triangulations: let Φ denote the
orthogonal projection of Rd to the orthogonal complement of the lower-dimensional flat spanned by U . Φ
maps U to 0 by construction, and P is mapped to a shadow P̂ := Φ(P). We obtain a U -spinal triangulation
of P by first star-triangulating P̂ with respect to 0 and then lifting each maximal simplex to Rd by taking
the preimage of its vertices under Φ (Figure 3). Vice versa, every spinal triangulation can be obtained in
this way.

1



(1)−→ (2)−→ (3)−→

(1)−→ (2)−→ (3)−→

Figure 3: Two examples of the lifting process: (1) Project polytope P to the orthogonal complement of the
flat spanned by U (vertices marked by prominent dots) to obtain shadow P̂. (2) Star-triangulate P̂ with
respect to the origin. (3) Lift star triangulation of P̂ to obtain U -spinal triangulation of P. Note: every
facet of P contains exactly |U | − 1 points of U in both examples.

An important consequence of our characterization is that a spine allows us to relate the volumes of a
convex polytope P and its shadow P̂ (with respect to that spine) by a precise equation. An application
of this observation leads to our second result: an exact volume formula of an important polytope arising
in number theory which we call the Everest polytope. We show that this polytope is the shadow of a
higher-dimensional simplotope, the product of simplices, whose volume is easy to determine.

Number theoretic background. In the following we briefly discuss the number-theoretic background
of the Everest polytope. G. R. Everest [14, 15] studied various counting problems related to Diophantine
equations. In particular, he proved asymptotic results for the number of values taken by a linear form whose
variables are restricted to lie inside a given finitely generated subgroup of a number field. This includes norm
form- and discriminant form equations, normal integral bases and related objects. Everest’s work contains
important contributions to the quantitative theory of S-unit equations and makes use of Baker’s theory of
linear forms in logarithms and Schmidt’s subspace theorem from Diophantine approximation; see for instance
[33, 16, 2]. Later, other authors [17] applied the methods of Everest to solve combinatorial problems in
algebraic number fields. The corresponding counting results involve various important arithmetic constants,
one of them being the volume of a certain convex polytope.

In order to introduce Everest’s constant, we use basic facts from algebraic number theory. Let K be a
number field, N = NK/Q the field norm and S a finite set of places of K including the archimedian ones.
We denote by OK,S = {α ∈ K : |α|v ≤ 1 for all v 6∈ S} the ring of S-integers and its unit group by UK,S ;
the group of S-units. Let c0, . . . , cn denote given non-zero algebraic numbers. During the last decades, a
lot of work is devoted to the study of the values taken by the expression c0x0 + . . . + cnxn, where the xn
are allowed to run through UK,S , see for instance [29, 22]. A specific instance of this kind of general S-unit
equations is the following combinatorial problem. As usual, two S-integers α and β are said to be associated
(for short α ∼ β) if there exists an S-unit ε such that α = βε. It is well-known that the group of S-units
UK,S is a free abelian group with s = |S| − 1 generators, ωK and RegK,S denote as usual the number of
roots of unity and the S-regulator of K, respectively (for the basic concepts of algebraic number theory see
[28]). Then for given n ∈ N, q > 0 the counting function u(n, q) is defined as the number of equivalence
classes [α]∼ such that

N(α) :=
∏
v∈S
|α|v ≤ q, α =

n∑
i=1

εi,

where εi ∈ UK,S and no subsum of ε1 + . . .+ εn vanishes. From the work of Everest [14, 15], the following
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asymptotic formula can be derived:

u(n, q) =
c(n− 1, s)

n!

(
ωK(log q)s

RegK,S

)n−1
+ o((log q)(n−1)s−1+ε)

for arbitrary ε > 0. Here c(n − 1, s) is a positive constant, and its exact value has been known only in
special cases; see [3] for more details. In general, c(n, s) is given as the volume of a convex polytope in Rns

that we define and study in Section 4. Our results show that

c(n, s) =
1

(s!)n+1

((n+ 1)s)!

(ns)!
,

which can also be written in terms of a multinomial coefficient as
(
(n+1)s
s,...,s

)
1

(ns)! .

Geometric background. Our results fall into the category of constrained triangulations of convex poly-
topes. Triangulations of polytopes are a classic topic in discrete geometry; an infamous question is the quest
for triangulating a d-hypercube with a minimal number of simplices [7]. Precise answers are only known
up to dimension 7 using computer-assisted proofs [25]. A contemporary overview on results relating to
triangulations of polytopes and more general point configurations is provided by de Loera, Rambau, and
Santos [10]. It includes a discussion on the triangulation of simplotopes, a geometric object whose study
goes back to Hadwiger [23], and has been studied, for instance, in the context of combinatorics [19], game
theory [36] and algebraic geometry [21, Ch. 7]. Simplotopes admit a standard triangulation, the so-called
staircase triangulation, which can easily be described in combinatorial terms. A by-product of our results
is that simplotopes can also be triangulated by a family of spinal triangulations.

An n-element subset U of the vertex set of a polytope with the property that each facet contains
exactly n−1 points of U is called a special simplex in the literature. Special simplices have been studied by
Athanasiadis [1] to relate the Ehrhart polynomial of integer polytopes with special simplex with the h-vector
of the shadow. This results found applications in the study of toric rings and Gorenstein polytopes [24, 5].
Polytopes with special simplices are further studied by de Wolff [11]. His classification yields, among other
results, upper bounds for the number of faces of a polytope with special simplices. Remarkably, special
simplices with two vertices, called spindles, are also used by Santos for his celebrated counterexample for
the Hirsch conjecture [32]. While these works employ similar techniques as our work, for instance, lifting
triangulations of the shadow to triangulations of the polytope, the (more elementary) questions of this paper
are not addressed in the related work. We also point out that despite the close relation to special simplices,
the notion of spines introduced in this paper is slightly more general because a facet is allowed to contain
all vertices of U .

Otherwise, constraining triangulations has mostly been considered for low-dimensional problems under
an algorithmic angle. For instance, a constrained Delaunay triangulation is a triangulation which contains a
fixed set of pre-determined simplices; apart from these constraints, it tries to be “as Delaunay as possible”;
see Shewchuk’s work [35] for details. While our work is related in spirit, there appears to be no direct
connection to this framework, because our constraint does not only ensure the presence of certain simplices
in the triangulation, but rather constrains all d-simplices at once.

Computing volumes of high-dimensional convex polytopes is another notoriously hard problem, from a
computational perspective [27, Sec. 13][13] as well as for special cases. A famous example is the Birkhoff
polytope of all doubly-stochastic n × n-matrices, whose exact volume is known exactly only up to n =
10 [30, 9]; see Section 6 for details. Our contribution provides a novel technique to compute volumes of
polytopes through lifting into higher dimensions. We point out that lifting increases the dimension, so
that the lift of a polytope is not the image of a linear transformation. Therefore, the well-known formula
vol(AP) =

√
det(ATA) vol(P) with A ∈ Re×d and e ≥ d does not apply to our case. Another interpretation

of our technique is to relate the volume of a polytope and the volume of its (spinal) projection. For a fixed
normal vector u, the volume volu of the projection of a polytope to the hyperplane normal to u is given by

volu =
1

2

m∑
i=1

|uũi| ,

3



where ũ1, . . . , ũm are the outward normal vectors of the facets of the polytope scaled by their volume [6,
Thm 1.1]. The cited paper also discusses the algorithmic problem of finding the projection vector that
yields the maximal and minimal projected volume. More results relating the volume of a polytope with
its projections (in codimension 1) are studied under the name of geometric tomography [20]; see also [34].
We do not see a simple way to derive the volume of a spinal projection using these approaches, partially
because our result relates the volume of polytopes of larger codimension.

Organization. We start by introducing the basic concepts from convex geometry in Section 2. We proceed
with our structural result on spinal triangulations, in Section 3. We calculate the vertices of the Everest
polytope in Section 4 and define a map from a simplotope to the Everest polytope in Section 5, leading to
the volume formula for the Everest polytope. A case study of applying our results to the Birkhoff polytope
is given in Section 6. We conclude with some additional remarks in Section 7.

A conference version of this paper appeared at the International Symposium on Computational Geometry
(SoCG) 2017 [26]. This extended version contains the missing proof details that were omitted in the
conference version for brevity. Moreover, Section 6 did not appear in that previous version.

2 Geometric concepts

Let M be an arbitrary subset of Rd with some integer d ≥ 1. The dimension of M is the dimension of the
smallest affine subspace of Rd containing M . We say that M is full-dimensional if its dimension is equal
to d. Throughout the entire paper, V will always stand for a finite point set in Rd that is full-dimensional
and in convex position, that is x /∈ conv(V \ {x}) for every x ∈ V , where conv(·) denotes the convex hull
in Rd.

Polytopes and simplicial complexes. We use the following standard definitions (compare, for instance,
Ziegler [37]): A polytope P is the convex hull of a finite point set in Rd in which case we say that the point set
spans P. A hyperplane H ⊆ Rd is called supporting (for P) if P is contained in one of the closed half-spaces
induced by H. A face of P is either P itself, or the intersection of P with a supporting hyperplane. If a
face is neither the full polytope nor empty, we call it proper. A face of dimension ` is also called `-face of
P, with the convention that the empty set is a (−1)-face. We call the union of all proper faces of P the
boundary of P, and the points of P not on the boundary the interior of P. 0-faces are called the vertices
of P, and we let V (P) denote the set of vertices. With ` being the dimension of P, we call (` − 1)-faces
facets, and (`− 2)-faces ridges of P. Any face F of P is itself a polytope whose vertex set is V (P) ∩ F .

It is well-known that every point p ∈ P (and only those) can be written as a convex combination of
vertices of P, that is p =

∑
v∈V (P) λvv with real values λv ≥ 0 for all v and

∑
v∈V (P) λv = 1. By

Carathéodory’s theorem, there exists a convex combination with at most d + 1 non-zero entries, that is,
p =

∑d+1
i=1 λivi with vi ∈ V (P), λi ≥ 0 and

∑
λi = 1.

An `-simplex σ with ` ∈ {−1, . . . , d} is a polytope of dimension ` that has exactly `+ 1 vertices. Every
point in a simplex is determined by a unique convex combination of the vertices. A simplicial complex C in
Rd is a set of simplices in Rd such that for a simplex σ in C, all faces of σ are in C as well, and if σ and τ
are in C, the intersection σ∩ τ is a common face of both (note that the empty set is a face of any polytope).
We let V (C) denote the set of all vertices in C. The underlying space

⋃
C of C is the union of its simplices.

We call a simplex in C maximal if it is not a proper face of another simplex in C. A simplicial complex
equals the set of its maximal simplices together with all their faces and is therefore uniquely determined by
its maximal simplices. Also, the underlying space of C equals the union of its maximal simplices.

In what follows, we let P := conv(V ) be the polytope spanned by V as fixed above. In particular,
dim(P) = d because V is full-dimensional and V (P) = V because V is in convex position.

Spines. We call U ⊆ V with |U | = n a spine of V if each facet of P contains at least n − 1 points of
U . Trivially, a one-point subset of V is a spine. If P is a simplex, any non-empty subset of vertices is a
spine. For a hypercube, every pair of opposite vertices forms a spine, but no other spines with two or more
elements exist.
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We derive an equivalent geometric characterization of spines next. The U -span (in V ) is the set of all
d-simplices σ satisfying U ⊆ V (σ) ⊆ V . Equivalently, it is the set of all d-simplices with vertices in V which
have conv(U) as a common face. Clearly, each simplex σ of the U -span is contained in P, and the same is
true for the union of all simplices in the U -span.

Lemma 1. Let U ⊆ V with |U | = n. Then, U is a spine of V if and only if the union of all U -span
simplices is equal to P, that is, if every point in P belongs to at least one simplex in the U -span.

Proof. We prove both directions of the equivalence separately. For “⇒”, we proceed by induction on n.
The statement is true for n = 0 by Carathéodory’s theorem. Let U be a set with at least one element,
u ∈ U arbitrary, and p ∈ P \ {u}. The ray starting in u through p leaves the polytope in a point p̄, and
this point lies on (at least) one facet F of P that does not contain u. By assumption, F contains all points
in Ū := U \ {u}. We claim that Ū is a spine of V̄ := V ∩F . To see that, note that F is spanned by V̄ and
the facets of F (considered as a polytope in Rd−1) are the ridges of P contained in F . Every such ridge R
is the intersection of F and another facet F ′ of P. By assumption, F ′ also contains at least n − 1 points
of U and it follows at once that R contains n − 2 points of Ū . So, Ū is a spine of V̄ , and by induction
hypothesis, there exists a (d− 1)-simplex σ̄ in the Ū -span in V̄ that contains p̄. The vertices of σ̄ together
with u span a simplex σ that contains p and σ is in the U -span by construction.

The direction “⇐” is clear if n ∈ {0, 1}, so we may assume that n ≥ 2 and proceed by contraposition. If
U is not a spine, we have a facet F of P such that less than n− 1 points of U lie on F . Then, every simplex
σ in the U -span has at least 2 vertices not on F , and therefore at most d − 1 vertices on F . This implies
that σ∩F is at most (d− 2)-dimensional. Therefore, the (finite) union of all U -span simplices cannot cover
the (d− 1)-dimensional facet F , which means that the U -span is not equal to P.

From now on, we use the (equivalent) geometric characterization from the preceding lemma and the
combinatorial definition of a spine interchangeably. A useful property is that spines extend to faces in the
following sense.

Lemma 2. Let U be a spine of V , and let F be an `-face of P. Then Ū := U ∩F is a spine of V̄ := V ∩F ,
both considered as point sets in R`. In particular, F contains at least n− (d− `) points of U .

Proof. For every simplex σ in the U -span, let σ̄ := σ ∩ F . Clearly, σ̄ is itself a simplex, spanned by the
vertices V (σ̄) = V (σ) ∩ F , and is of dimension at most `. Because U is a spine of V , the union of all σ̄
covers F = conv(V̄ ). Moreover, V (σ̄) contains Ū . If σ̄ is not of dimension `, we can find an `-simplex in
the Ū -span of V̄ that has σ̄ as a face just by adding suitable vertices from V̄ . This implies that the union
of the Ū -span covers F . The “in particular” part follows by downward induction on `.

Star triangulations. Let V ′ ⊆ Rd be a finite point set that is full-dimensional, but not necessarily in
convex position. We call a simplicial complex C a triangulation of V ′ if V (C) = V ′ and

⋃
C = conv(V ′). In

this case, we also call C a triangulation of the polytope conv(V ′). In a triangulation of V ′, every maximal
simplex must be of dimension d.

We will consider several types of triangulations in this paper. For the first type, we assume that
V ′ = V ∪ {0}, where 0 = (0, . . . , 0) /∈ V , V is in convex position (as fixed before), and either 0 lies in
conv(V ) or V ′ is in convex position as well. We define a star triangulation of V ′ as a triangulation where
all d-simplices contain 0 as a vertex (Figure 4).

Figure 4: The three types of star triangulations.

Lemma 3. A star triangulation of V ′ exists.
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Proof. We distinguish three cases, dependent on the position of 0. If it lies in the interior of conv(V ), we
consider an arbitrary triangulation of V (for instance, the Delaunay triangulation [8, Ch. 9]), remove all
interior simplices from this triangulation, and obtain a star triangulation by joining every (d − 1)-simplex
with 0.

If V ′ is in convex position, we proceed similarly: Starting with an arbitrary triangulation of V ′, we remove
the d-simplices to obtain a triangulation of the boundary facets, and join 0 with every (d− 1)-simplex that
does not contain 0 to obtain a star triangulation.

It remains the case that 0 lies on the boundary of conv(V ). For this case, consider again a triangulation
of V . Inductively in dimension, re-triangulate any k-face τ that contains 0 by joining 0 with each (k−1)-face
on the boundary of τ that does not contain 0. The result of this process is a star triangulation.

Pulling triangulations. As usual, let V be a point set in convex position spanning a polytope P in Rd,
and let p1 ∈ V . We can describe a star triangulation with respect to p1 also as follows: Triangulate each
facet of P that does not contain p1 such that the triangulations agree on their common boundaries. Writing
Σ := {σ1, . . . , σm} for the maximal simplices triangulating these facets, it is not difficult to see that a (star)
triangulation of P is given by the maximal simplices

p1 ∗ Σ := {p1 ∗ σ1, . . . ,p1 ∗ σm},

where v ∗ σ is the simplex spanned by v and the vertices of σ. Recursively star-triangulating the facets not
containing p1 in the same manner, this construction gives rise to the pulling triangulation.

To define the triangulation formally, we fix a total order p1 ≺ p2 ≺ . . . ≺ pn on V . For a single point,
we set Pull({p}) := {p}. For any face F of P with positive dimension, let pk denote the smallest vertex of
F with respect to ≺. Then

Pull(F) := pk ∗
⋃

R facet of F
pk /∈R

Pull(R).

The following result follows directly by induction on the dimension of the faces. See [4, Sec.5.6], [10, Lemma
4.3.6]:

Theorem 4. Pull(P) are the maximal simplices of a triangulation of P.

3 Spinal triangulations

Fix a simplicial complex C with vertex set V (C) in Rd and a set U ⊆ V (C) of size at most d + 1. Let σ
denote the simplex spanned by U . We call C U -spinal if every maximal simplex of C contains σ as a face.
If C is a triangulation of V , we talk about a U -spinal triangulation accordingly. U -spinal triangulations
are closely related to spines: if a U -spinal triangulation of V exists, then U is a spine of V , because all
maximal simplices of the triangulation lie in the U -span. For the previously discussed spine of a hypercube
consisting of two opposite points, also a spinal triangulation exists, consisting of d! d-simplices that all share
the diagonal connecting these points. This construction is called staircase triangulation [10] or Freudenthal
triangulation [12].

We show next that a spine always induces a spinal triangulation. Let P be a polytope spanned by a
finite full-dimensional point set V ⊆ Rd in convex position and let U = {u1, . . . ,un} be a spine of V . We
fix a total order ≺ on V where u1 ≺ u2 ≺ . . . ≺ un are the n smallest elements, preceeding all points in
V \ U .

Lemma 5. The pulling triangulation with respect to ≺ is a U -spinal triangulation.

Proof. We prove the statement by induction on n. Let T denote the pulling triangulation with respect to ≺.
For n = 1, every maximal simplex of T contains u1 by construction. For n > 1, every maximal simplex is a
join of u1 with a (d−1)-simplex σ that is contained in a facet F of P that does not contain u1. σ, however,
is itself a maximal simplex of the pulling triangulation of F . By the spine property, U ′ := {u2, . . . ,un}
are vertices of F and form a spine by Lemma 2. By induction, the pulling triangulation of F is U ′-spinal.
Therefore, σ contains all vertices of U ′, and the join with u1 contains all vertices of U .
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Folds and lifts. As before, let P be a polytope spanned by a finite full-dimensional point set V ⊆ Rd

in convex position, U ⊆ V a spine of V with n elements, and set e := d − n + 1. Assume without loss of
generality that the origin is among the points in U . Furthermore let AU be the subspace of Rd spanned by
U . It is easy to see that the spine points are affinely independent, so that the dimension of AU is n− 1. Let
A⊥U be the orthogonal complement, which is of dimension e. Let ΦU : Rd → A⊥U the (orthogonal) projection

of Rd to A⊥U . For notational convenience, we use the short forms x̂ := ΦU (x) and X̂ := ΦU (X) for the
images of points and sets in Rd.

Fix a U -spinal triangulation T and let σ be a maximal simplex of T . Recall that the vertices of σ are the
points of U , which all map to 0 under ΦU , and e additional vertices v1, . . . ,ve. It follows that σ̂ is the convex
hull of {0, v̂1, . . . , v̂e}. Moreover, since σ has positive (d-dimensional) volume, its projection σ̂ has positive
(e-dimensional) volume as well. It follows that σ̂ is a e-simplex spanned by {0, v̂1, . . . , v̂e}. Consequently,
with σ1, . . . , σt being the maximal simplices of T , we call its fold the set of simplices consisting of σ̂1, . . . , σ̂m
and all their faces. The following statement is a reformulation of [1, Prop.2.3] and [31, Prop.3.12]

Lemma 6. The fold of a U -spinal triangulation T is a star triangulation (with respect to the origin).

Proof. All maximal simplices of the fold contain the origin by construction. Moreover, their union covers P̂
because T covers P. Finally, we argue that the fold of two distinct maximal simplices σ1, σ2 cannot overlap:
Let H be a hyperplane that separates σ1 and σ2. Since AU is contained in the affine span of σ1 ∩ σ2, H
contains AU . Then, ΦU (H) is a hyperplane in Re which separates the two e-simplices σ̂1 and σ̂2.

We will now define the converse operation to get from a star triangulation in Re to a U -spinal triangu-
lation in Rd. We first show that pre-images of vertices are well-defined.

Lemma 7. If v ∈ V \ U then v̂ 6= 0. Furthermore, if v 6= w ∈ V \ U then v̂ 6= ŵ.

Proof. Since U is a spine of V , there is a d-simplex σ in the U -span in V which has v among its vertices. If
v is in the kernel of ΦU , then v and the points in U (which span the kernel of ΦU ) are linearly dependent
and σ cannot be full-dimensional, which is a contradiction. Thus v̂ 6= 0.

For the second part, we assume to the contrary that v 6= w but v̂ = ŵ. If there is also a d-simplex σ in the
U -span which has both v and w among its vertices, σ̂ cannot be full-dimensional, which is a contradiction.
Otherwise, if no such d-simplex σ exists, the d-simplices incident to v triangulate a neighborhood of v
within P, and the same is true for w, with the two sets of simplices being disjoint. It follows that their
projections under ΦU have to overlap, contradicting Lemma 6.

For an e-simplex σ̂ ⊆ Re with vertices in V̂ and containing 0 as vertex, the lifted d-simplex σ ⊆ Rd

is spanned by the pre-image of V (σ̂) under ΦU
∣∣
V

(the restriction of ΦU to V ). Note the slight abuse of
notation as we chose “σ̂” as the name of a simplex before even defining the simplex σ, but the naming is
justified because σ̂ indeed is equal to ΦU (σ) in this case. Given a star triangulation of V̂ , its lift is given
by the set of lifts of its maximal simplices, together with all their faces.

Our goal is to show that the lift of a star triangulation is a U -spinal triangulation of P. As a first step,
we observe that such a lift is a U -spinal simplicial complex.

Lemma 8. The lift of a star triangulation of V̂ is a U -spinal simplicial complex in Rd whose underlying
space is a subset of P.

Proof. Fix a star triangulation T̂ and let T denote its lift. For any simplex in T , all faces are included
by construction. We need to show that for two simplices σ and τ in T , σ ∩ τ is a face of both. We
can assume without loss of generality that σ and τ are maximal, hence d-simplices. By construction, σ
and τ are the lifts of e-simplices σ̂ and τ̂ in T̂ . Clearly, σ̂ and τ̂ intersect because they share the vertex
0. Moreover, since σ̂ and τ̂ belong to a triangulation, their intersection is a common face, spanned by
a set of vertices {0, v̂1 . . . , v̂k}. Hence, there exists a hyperplane Ĥ in Re separating σ̂ and τ̂ such that
σ̂ ∩ Ĥ = conv{0, v̂1 . . . , v̂k} = τ̂ ∩ Ĥ. Let H denote the preimage of Ĥ under ΦU . Then, H is a separating
hyperplane for σ and τ , and σ ∩ H = conv{u1, . . . ,un,v1, . . . ,vk} = τ ∩ H as one can readily verify. This
shows that the lift is a simplicial complex. Its underlying space lies in P because every lifted simplex does.
It is U -spinal because the lift of every simplex contains U by definition.
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Volumes The converse of Lemma 6 follows from the fact that all lifts of star triangulations have the same
volume, as we will show next.

Lemma 9. Let σ be a simplex with vertices in V that contains U = {u1, . . . ,un}. Then(
d

n− 1

)
vol(σ) = vol(U)vol(σ̂),

where vol(U) denotes the volume of the simplex spanned by U .

Proof. For a k-simplex τ = {v0, . . . , vk}, let p(τ) denote the parallelotope spanned by v1−v0, . . . , vk−v0. It
is well-known that vol(p(τ)) = k!vol(τ). Rewriting the claimed volume by expanding the binomial coefficient
and noting that d− (n− 1) = e yields

d!vol(σ)︸ ︷︷ ︸
vol(p(σ))

= (n− 1)!vol(U)︸ ︷︷ ︸
vol(p(U))

e!vol(σ̂)︸ ︷︷ ︸
vol(p(σ̂))

.

To prove the relation between the volumes of paralleotopes, we assume without loss of generality that
u1 = 0. Let AU denote the linear subspace spanned by u2, . . . , un, and let Aq

U denote the parallel affine
subspace that contains q ∈ A⊥U . Then, vol(p(σ) ∩ AU ) = vol(p(U)) by definition. By Cavalieri’s principle,
every parallel cross-section of p(σ) has the same volume. More precisely,

vol(p(σ) ∩ Aq
U ) =

{
vol(p(U)) if q ∈ p(σ̂)

0 otherwise
.

Using Fubini’s theorem, the volume of p(σ) can be expressed as an integral over all cross-sections, which
yields

vol(p(σ)) =

∫
q∈A⊥U

vol(p(σ) ∩ Aq
U )dq =

∫
q∈p(σ̂)

vol(p(U))dq = vol(p(U))vol(p(σ̂)).

Lemma 10. Let U be a spine of V , and T denote the lift of a star triangulation of V̂ Then, with the
notation of Lemma 9, (

d

n− 1

)
vol
(⋃
T
)

= vol(U)vol(P̂),

where
⋃
T is the underlying space of T . In particular, the underlying spaces of the lifts of all star triangu-

lations of V̂ have the same volume.

Proof. The statement follows directly from Lemma 9 because the relation holds for any simplex in the star
triangulation and its lift.

With that, we can prove our first main theorem.

Main Theorem 1 (Lifting theorem). Let P be a polytope spanned by a full-dimensional finite point set
V ⊆ Rd in convex position and U := {u1, . . . ,un} ⊆ V . Then,

U is a spine of V if and only if there exists a U -spinal triangulation of V .

In this case, for n ≥ 1, the U -spinal triangulations of V are exactly the lifts of the star triangulations of V̂ ,
the orthogonal projection of V to the orthogonal complement of the affine space spanned by U . Furthermore,
if n ≥ 2, (

d

n− 1

)
vol(P) = vol(U)vol(P̂).
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Proof. For the equivalence, the “if”-part follows directly from the geometric characterization of spines
(Lemma 1), and the “only if” part follows from Lemma 5.

For the second part, given any U -spinal triangulation T ∗, its fold T̂ ∗ is a star triangulation by Lemma 6,
and by lifting that star triangulation, we obtain T ∗ back. Vice versa, starting with any star triangulation
T̂ , we know that its lift is a simplicial complex contained in P by Lemma 8. By Lemma 10, the lifts of T̂
and T̂ ∗ have the same volume, but the lift of the latter is P. It follows that also the lift of the former is a
triangulation of P, proving the second claim.

The claim about the volumes follows at once by applying Lemma 10 to T ∗ and T̂ ∗.

We remark that not every U -spinal triangulation is a pulling triangulation. This follows from the fact
that each pulling triangulation is regular (see [10, p.181]), but examples of non-regular spinal triangulations
are known (one such example is given in [10, p.306]).

4 The Everest polytope

For n, s ∈ N, define En,s := {x ∈ Rns | gn,s(x) ≤ 1} where gn,s : Rns → R with

(x1,1, . . . , xn,s) 7→
s∑
j=1

max {0, x1,j , . . . , xn,j}+ max

0,−
s∑
j=1

x1,j , . . . ,−
s∑
j=1

xn,j

 .

It is not difficult to verify that En,s is bounded and the intersection of finitely many halfspaces of Rns. We
call it the (n, s)-Everest polytope. It is well-known [3] that the number-theoretic constant c(n, s) discussed
in the introduction is equal to the volume of En,s.

Vertex sets. In order to describe the vertices of En,s we introduce the following point sets which we also
utilize in later parts of the paper. Note that we identify Rns and Rn×s which explains the meaning of
“row” and “column” in the definition. Let es(i) denote the i-th s-dimensional unit (row) vector with the
convention that es(0) = 0. We define the following sets of points in Rns:

Vn,s :=


−es(j1)

...
−es(jn)


∣∣∣∣∣∣∣ j1, . . . , jn ∈ {0, . . . , s}

 ,

Un,s :=


−es(j)...
−es(j)


∣∣∣∣∣∣∣ j ∈ {0, . . . , s}

 ,

Pn,s := Vn,s − (Un,s \ {0}) = {v − u | v ∈ Vn,s ∧ u ∈ Un,s \ {0}} .

It can be readily verified that Vn,s is the set of points in {−1, 0}ns such that there is at most one −1 per
row, Un,s is the set of points in Vn,s such that all −1’s (if there are any) are contained in a single column,
and Pn,s is the set of points in {−1, 0, 1}ns such that

• all ’1’s (if there are any) are in a unique ”1-column“,
• all entries of the 1-column are either 0 or 1,
• all rows with a 1 contain at most one −1,
• all rows without a 1 contain only ’0’s.

Lemma 11. Pn,s ∩Vn,s = {0}, Un,s ⊆ Vn,s, |Vn,s| = (s+ 1)n, |Un,s| = s+ 1, and |Pn,s| = s(s+ 1)n− s+ 1.

Proof. Follows directly from the definitions and from basic combinatorics.

Theorem 12. The set of vertices of En,s is given by (Pn,s ∪ Vn,s) \ {0} = (Vn,s − Un,s) \ {0}.
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We split the proof into several parts which will be treated in the following lemmas. For the rest of this
section, let i and j (with a possible subscript) denote elements of {1, . . . , n} and {1, . . . , s}, respectively, let
v = (v1,1, . . . , vn,s) be a vertex of En,s, and set

mj := max {0, v1,j , . . . , vn,j} for all j,

si := −
s∑
j=1

vi,j for all i,

m := max {0, s1, . . . , sn} .

Then

gn,s

v1,1 · · · v1,s
...

...
vn,1 · · · vn,s

 = max


0
v1,1

...
vn,1

+ · · ·+ max


0
v1,s

...
vn,s

+ max


0

−v1,1 − · · · − v1,s
...

−vn,1 − · · · − vn,s


= m1 + · · ·+ms +m

= 1.

Furthermore it can easily be verified that vi,j ∈ [−1, 1] for all i and j, mj ∈ [0, 1] for all j, si ∈ [−1, 1] for
all i, and m ∈ [0, 1].

In the proofs below, we will repeatedly apply the following argument: if there is an ε > 0 and an x ∈ Rns

such that v± δx ∈ En,s for all δ ∈ [0, ε], v cannot be a vertex of En,s (since it is in the interior of an at least
1-dimensional face).

Lemma 13. If mj = 0 for all j then v ∈ Vn,s.

Proof. Since all mj are equal to zero, all vi,j have to be non-positive, so all si are non-negative. Also we
get that m is equal to 1 which implies that at least one of the si is equal to 1. Suppose that vi0,j0 ∈
(−1, 0) for some i0, j0. If si0 < 1, then for ε := min {−vi0,j0 , 1− si0} > 0 and δ ∈ [0, ε] we get that
gn,s(v1,1, . . . , vi0,j0 ± δ, . . . , vn,s) = 1, so (v1,1, . . . , vi0,j0 ± δ, . . . , vn,s) is on the boundary of En,s and v
cannot be a vertex of En,s. To see this more easily consider the example

v =

 −1 0 0 0
0 −1 0 0
−1/6 0 −2/3 0

 −→
 −1 0 0 0

0 −1 0 0
−1/6± δ 0 −2/3 0

 .

If on the other hand si0 is equal to 1, then there is a j1 6= j0 such that vi0,j1 ∈ (−1, 0). But then we get
gn,s(v1,1, . . . , vi0,j0 ± δ, . . . , vi0,j1 ∓ δ, . . . , vn,s) = 1 for ε := min {−vi0,j0 ,−vi0,j1 , vi0,j0 + 1, vi0,j1 + 1} > 0
and δ ∈ [0, ε], so again v cannot be a vertex of En,s. Again we give an example

v =

 −1 0 0 0
0 −1 0 0
−1/6 −1/6 0 −2/3

 −→
 −1 0 0 0

0 −1 0 0
−1/6± δ −1/6∓ δ 0 −2/3

 .

Thus we get that all vi,j are either −1 or 0 and it is clear that in any given row i0 only one of the vi0,j can
be −1 (as they sum up to −si0 ≥ −1). Therefore v ∈ Vn,s.

Lemma 14. If mj0 = 1 for some j0 then v ∈ Pn,s.

Proof. Since mj0 is equal to 1, all other mj and m have to be equal to zero. Thus all vi,j0 are non-negative
and at least one of them is equal to 1. Also, all other vi,j (i.e. if j 6= j0) are non-positive and so are all
si. Just as in the proof of Lemma 13 we can show that all vi,j are either −1, 0, or 1; we omit the details.
Furthermore it is clear that if vi0,j0 is equal to 1 for some i0, then there cannot be more than one −1 in the
i0-th row (as si0 ≤ 0). By the same reasoning, if vi0,j0 is equal to 0, there cannot be any −1 in the i0-th
row at all. Considering the definition of Pn,s we thus see that v ∈ Pn,s.
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Lemma 15. If mj 6= 1 for all j then mj = 0 for all j.

Proof. We assume to the contrary that mj0 ∈ (0, 1) for some j0. Suppose that all other mj are equal
to zero. Then m = 1 − mj0 ∈ (0, 1) and for ε := min {mj0 , 1−mj0} > 0 and δ ∈ [0, ε] we get that
gn,s(v1,1, . . . , v1,j0 ± δ, . . . , v1,s, . . . , vn,1, . . . , vn,j0 ± δ, . . . , vn,s) = 1, hence v is not a vertex of En,s. As an
example consider

v =

0 1/3 0 −2/3
0 −1/2 0 −1/4
0 1/6 −1/6 −2/3

 −→
0 1/3± δ 0 −2/3

0 −1/2± δ 0 −1/4
0 1/6± δ −1/6 −2/3

 .

If on the other hand there is another mj1 that is not equal to zero we get gn,s(x1,1, . . . , x1,j0 ± δ, . . . , x1,j1 ∓
δ, . . . , x1,s, . . . , xn,1, . . . , xn,j0 ± δ, . . . , xn,j1 ∓ δ, . . . , xn,s) = 1 for ε := min {mj0 ,mj1 , 1−mj0 , 1−mj1} > 0
and δ ∈ [0, ε], so again v is not a vertex of En,s. An example for this situation is

v =

0 1/3 0 −1/6
0 −1/2 1/2 0
0 1/6 2/3 −2/3

 −→
0 1/3± δ 0∓ δ −1/6

0 −1/2± δ 1/2∓ δ 0
0 1/6± δ 2/3∓ δ −2/3

 .

Proof of Theorem 12. Lemma 15 implies that if v is a vertex of En,s, then we are in the situation of either
Lemma 13 or Lemma 14, hence v ∈ Pn,s ∪ Vn,s. Furthermore it is clear that 0 is not a vertex of En,s. Also,
it follows from the definition of Pn,s that

En,s := (Pn,s ∪ Vn,s) \ {0} = ((Vn,s − (Un,s \ {0})) ∪ Vn,s) \ {0} = (Vn,s − Un,s) \ {0} .

We are left to show that En,s ⊆ V (En,s). First we observe that gn,s(v) = 1 for all v ∈ En,s. We consider
the case that n, s ≥ 2 and assume that there is a v ∈ En,s that is not a vertex of En,s. Since v is on the
boundary of En,s but not a vertex of En,s, it is contained in the interior of an at least 1-dimensional face F
of En,s. Let w be any vertex of F . Then w ∈ En,s and v 6= w.

Now let a ∈ E2,2, a 6= b ∈ E2,2 ∪ {0}, and consider the convex combination αa + (1− α)b, α ∈ R. By
plugging in all possible values of a and b one can verify that if α > 1 then g2,2(αa + (1− α)b) > 1.

Let v′,w′ ∈ R2×s be submatrices consisting of 2 rows of v and w respectively, such that v′ 6= 0 and
v′ 6= w′. By definition of En,s, v′ and w′ thus respectively contain submatrices of the form a and b
from above while the remaining entries are padded with zeros. It follows from the definition of gn,s that
gn,s(αv + (1 − α)w) > 1 if α > 1, which contradicts the fact that v is in the interior of F . Hence,
En,s ⊆ V (En,s) if n, s ≥ 2. If n = 1 and s ≥ 2 one can proceed analogously by considering a ∈ E1,2,
a 6= b ∈ E1,2 ∪ {0}; same goes for s = 1 and a ∈ E1,1, a 6= b ∈ E1,1 ∪ {0}.

Corollary 16. The number of vertices of En,s is given by (s+ 1)n+1 − s− 1.

Proof. Follows directly from Theorem 12 and Lemma 11.

5 Projections of simplotopes

We will establish a relation between the Everest polytope En,s and a special polytope known as simplotope.
This relation will allow the comparison of the volumes of the two polytopes even though they are of different
dimension.

Simplotopes. For s ∈ N, the s-simplex ∆s is spanned by the points (0,−es(1), . . . ,−es(s)) in Rs, with
es(i) the i-th standard vector in Rs, as before. A simplotope is a Cartesian product of the form ∆s1 ×
. . .×∆sn with positive integers s1, . . . , sn. Note that in the literature, simplotopes are usually defined in a
combinatorially equivalent way using the standard s-simplex spanned by (s + 1)-unit vectors in Rs+1. We
restrict to the case that all si are equal, and we call

Sn,s = ∆s × . . .×∆s︸ ︷︷ ︸
n times
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the (n, s)-simplotope for n, s ∈ N.
For instance, d-hypercubes are d-fold products of line segments, and therefore (n, s)-simplotopes with

n = d and s = 1. It is instructive to visualize a point in Sn,s as an n × s-matrix with real entries in [0, 1],
where the sums of the entries in each row do not exceed 1. One can readily verify that the set of vertices of
the (n, s)-simplotope is equal to Vn,s, as given in the beginning of Section 4. Moreover, it is straight-forward
to verify that each facet of Sn,s is given by

∆s × . . .×∆s︸ ︷︷ ︸
i times

×F ×∆s × . . .×∆s︸ ︷︷ ︸
n− i− 1 times

where F is a facet of ∆s and 0 ≤ i ≤ n− 1. It follows at once:

Theorem 17. Un,s is a spine of Vn,s = V (Sn,s).

A linear transformation. We call the matrix

Πn,s :=

 −Is

Ins
...
−Is

 =



1 0 −1 0
. . .

. . .

. . . 0 −1
. . .

...
. . . −1 0

. . .
. . .

0 1 0 −1


∈ R(ns)×((n+1)s),

where Id is the identity matrix of dimension d, the (n, s)-SE-transformation (“SE” stands for “Simplotope
↔ Everest polytope”). We show that the name is justified, as it maps the (n + 1, s)-simplotope onto the
(n, s)-Everest polytope.

Theorem 18. Πn,s(V (Sn+1,s) \ Un+1,s) = V (En,s), Un+1,s \ {0} is a basis of ker(Πn,s) (in particular,
Πn,sUn+1,s = {0}), and 0 is contained in the interior of En,s. In particular, Πn,sSn+1,s = En,s.
Proof. Let

v =

 −es(j1)
...

−es(jn+1)

 ∈ Vn+1,s \ Un+1,s, u =

−es(j0)
...

−es(j0)

 ∈ Un+1,s,

where j1, . . . , jn+1 ∈ {0, . . . , s} not all equal and j0 ∈ {0, . . . , s}. First we note that any row of Πn,s is of
the form

ri,j := (0, . . . ,0︸ ︷︷ ︸
i−1

times

, es(j),0, . . . ,0︸ ︷︷ ︸
n−i

times

,−es(j)) ∈ R(n+1)s ' R(n+1)×s,

where i ∈ {1, . . . , n}, j ∈ {1, . . . , s}, and 0 is the s-dimensional zero (row-)vector. For some i and j, we can
thus compute

ri,jv = es(j)(−es(ji))− es(j)(−es(jn+1)) = δjn+1,j − δji,j ,

where δx,y for x, y ∈ R is the Kronecker delta function, i.e. δx,y ∈ {0, 1} and δx,y = 1 iff x = y. But then
we get

Πn,sv =

δjn+1,1 − δj1,1 . . . δjn+1,s − δj1,s
...

...
δjn+1,1 − δjn,1 . . . δjn+1,s − δjn,s

 =

δjn+1,1 . . . δjn+1,s

...
...

δjn+1,1 . . . δjn+1,s

−
δj1,1 . . . δj1,s

...
...

δjn,1 . . . δjn,s


=

es(jn+1)
...

es(jn+1)

−
es(j1)

...
es(jn)

 =

−es(j1)
...

−es(jn)

−
−es(jn+1)

...
−es(jn+1)

 .
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If jn+1 6= 0 we thus get that Πn,sv ∈ Vn,s− (Un,s \{0}) and Πn,sv 6= 0 (since j1, . . . , jn+1 are not all equal),
hence Πn,sv ∈ Pn,s \ {0} by definition of Pn,s. If, on the other hand, jn+1 = 0 then Πn,sv ∈ Vn,s \ {0}.
Altogether we can conclude

Πn,s(V (Sn+1,s) \ Un+1,s) = Πn,s(Vn+1,s \ Un+1,s) = (Pn,s ∪ Vn,s) \ {0} = V (En,s).

On the other hand we get

ri,ju = es(j)(−es(j0))− es(j)(−es(j0)) = 0,

hence Πn,sUn+1,s = {0}. Clearly Un+1,s \ {0} is linearly independent and 0 is an interior point of En,s.

We are now ready to prove a formula for the Everest polytope.

Main Theorem 2. The volume of the (n, s)-Everest polytope is given by

vol(En,s) =
((n+ 1)s)!

(ns)!(s!)n+1
.

Proof. We want to apply the Lifting Theorem (Main Theorem 1) with P ← Sn+1,s, P̂ ← En,s, d← (n+ 1)s
and e ← ns. However, a minor modification is needed, because the SE-transformation Πn,s is not a

projection matrix. So, let Π̃n,s :=

(
Πn,s

0 Is

)
∈ R((n+1)s)×((n+1)s), Π := (Ins 0) ∈ R(ns)×((n+1)s), and let

S̃n+1,s := Π̃n,sSn+1,s denote the transformed simplotope. Clearly, vol(S̃n+1,s) = vol(Sn+1,s), ΠS̃n+1,s =

En,s, and the transformed spine points Ũn+1,s := Π̃n,sUn+1,s span the kernel of Π. Using Main Theorem 1

on S̃n+1,s and En,s, we obtain(
(n+ 1)s

ns

)
vol(S̃n+1,s) = vol(Ũn+1,s)vol(En,s).

Furthermore, vol(Ũn+1,s) = 1
s! since Ũn+1,s = {(0, . . . ,0,−es(j)) | j ∈ {0, . . . , s}}. Moreover, Sn+1,s is the

(n+ 1)-fold product of simplices ∆s spanned by 0 and s unit vectors. Hence, the volume of ∆s is 1/s!, and
by Fubini’s theorem,

vol(S̃n+1,s) = vol(Sn+1,s) = (vol(∆s))
n+1

=
1

(s!)n+1
.

Plugging in the formulas for vol(Ũn+1,s) and vol(S̃n+1,s) into the formula given by the lifting theorem the
claim follows by rearranging terms.

6 Projecting the Birkhoff polytope

We apply our findings to the family of Birkhoff polytopes which are among the most studied objects in
polytope theory [37, 30, 9]. Because of the difficulty of determining their volumes, it is natural to ask
whether our Lifting Theorem yields new insights for Birkhoff polytopes as well. In this section we use a
(spinal) projection of the n-th Birkhoff polytope Bn to arrive at a projected polytope B̂n whose volume is
linked to the volume of Bn in a direct way. Our construction is not canonical, and other variants of B̂n can
be obtained, relating to the volume of the Birkhoff polytope in a similar way. The goal of this section is to
exemplify one choice of B̂n for which all boundary vertices can be effectively computed.

Recall the definition of the n-th Birkhoff polytope Bn as the convex hull of all (n × n) permutation

matrices, where we identify a permutation matrix with a point in Rn
2

by concatenating its rows. As noted
by de Wolff [11, Example 2.6], the Birkhoff polytope contains a spine: with

u :=


0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0
0 · · · · · · 0 1
1 0 · · · · · · 0

 ∈ Rn×n,
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the set

Un :=
{
uk | k ∈ {0, . . . , n− 1}

}
is a spine of Bn with n points.

While embedded in Rn
2

, Bn is only (n−1)2-dimensional; since our Lifting Theorem assumes the polytope
to be full-dimensional, our first step is to embed Bn in a subspace where it is full-dimensional. A simple
way to achieve this is to remove the last row and column of each permutation matrix, thus identifying a
vertex of Bn with a point in R(n−1)2 . Note that a missing row and column of a permutation matrix can be
recovered by the remaining entries, so this vertex mapping is bijective.

Let An denote the matrix that realizes the above linear map Rn
2 → R(n−1)2 . It can be shown that AnBn

is indeed full-dimensional. In fact, we can specify a matrix Bn defining a linear map R(n−1)2 → Rn
2

in the
opposite direction such that the composition BnAn maps Bn to a translation of Bn. Moreover, the square
root of the determinant of BTnBn specifies the difference in volume of Bn and AnBn.

Lemma 19. vol(Bn) = nn−1 · vol(AnBn).

We refer to Appendix A for the (lengthy) definitions of An and Bn and the proof of the statement.

Our goal is to project the (stretched) Birkhoff polytope AnBn using its spine. To simplify this process,
we apply an affine transformation such that the spine contains the origin, and the remaining (n− 1) spine
points are the first (n−1) coordinate vectors e1, . . . , en−1. Clearly, there exists a matrix Cn and a translation
vector bn that realize these properties. Hence, we arrive at the polytope CnAnBn +bn which has the spine
(0, e1, . . . , en−1) and whose volume is related to vol(Bn) by a factor of nn−1 |det(Cn)| where

Lemma 20. |det(Cn)| = 1.

Again, we refer to Appendix A for the definition of Cn and bn and the proof.
Because of the particular spine structure of the transformed polytope, the projection with respect to

the spine is simply described by removing the first (n − 1) coordinates of a point. Let Dn denote the
(n− 2)(n− 1)× (n− 1)2-matrix realizing this projection and define

B̂n := Dn(CnAnBn + bn).

The volume of B̂n can now be expressed using Main Theorem 1. Since the spine is spanned by n − 1
coordinate vectors, its volume is 1

(n−1)! . Therefore,(
(n− 1)2

n− 1

)
vol(CnAnBn + bn) = vol(B̂n)

1

(n− 1)!
.

Using Lemma 19 and Lemma 20, we arrive at the relation(
(n− 1)2

n− 1

)
vol(Bn) = vol(B̂n)

1

(n− 1)!
nn−1.

Therefore, B̂n provides a new angle to study the volume of the Birkhoff polytope. We remark again
that our construction has the advantage that the vertices of B̂n can be easily generated since the matrices
and vectors of our construction are explicit (see Appendix A). We list the 4!− 4 = 20 vertices of B̂4 as an
example (we set: 1 := −1):

(
0 0 0
0 0 1

)
,

(
0 1 1
0 1 0

)
,

(
0 1 1
0 0 0

)
,

(
0 1 0
0 1 0

)
,

(
0 1 0
0 0 1

)
,

(
1 0 1
0 1 1

)
,

(
1 0 1
0 1 0

)
,(

0 0 0
1 0 0

)
,

(
0 0 1
1 0 0

)
,

(
0 0 1
0 0 1

)
,

(
1 0 0
1 0 0

)
,

(
1 0 0
1 1 0

)
,

(
0 1 0
0 0 1

)
,

(
0 1 0
1 0 1

)
,(

0 0 0
1 1 0

)
,

(
0 0 0
0 1 1

)
,

(
1 1 0
1 0 1

)
,

(
1 1 0
0 0 0

)
,

(
1 0 1
1 0 0

)
,

(
1 0 1
0 1 0

)
.
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7 Conclusions and further remarks

Main Theorem 1 combines several new results. It answers the question of the existence of a triangulation of a
polytope under the constraint that a given subset of the vertices of the polytope must be contained in every
maximal simplex of the triangulation. Furthermore, it characterizes all such triangulations and provides a
method to compute one (or all) efficiently from the lift of a star triangulation. Finally, it generalizes the
well-known relation vol(AM) = |det(A)| vol(M) where M is a measurable subset of Rd and A ∈ Rd×d to
certain cases where A is not a square matrix. In particular, it allows us to express the volume of an object
in Rd in terms of the volume its “shadow” in Re, and vice versa.

The shadow that a cube in R3 casts if the light shines parallel to any of its space diagonals is a regular
hexagon. Assuming a cube with side length `, the theorem implies that the volume of the cube and the
volume (area) of its shadow (the hexagon) differ by a factor of

√
3/` which provides an alternative method

to compute the volume of a hexagon from the volume of a cube. By lifting the “complicated” hexagon to
a higher dimensional space it gains more symmetries and becomes the comparatively simple cube. In the
same fashion, the complicated Everest polytope is the shadow of the simpler simplotope which allowed the
computation of its volume in Main Theorem 2.

Starting with a polytope and a spine (with at least two points), it is easy to determine the volume of the
“shadow” with respect to the spine using our theorem. On the other hand, there is no easy way to tell if a
given shape is the shadow of some higher dimensional object and in the case of the Everest polytope, this
is the interesting direction. We pose the question of whether other polytopes (e.g., the Birkhoff polytope)
can be expressed as shadows of other polytopes. For that purpose, it might be worthwhile to find general
methods or at least good heuristics to determine if a complicated shape can be recognized as the shadow of
some simpler object.

Acknowledgements. We thank Raman Sanyal and Volkmar Welker for helpful discussions that have led
to significant simplifications of our exposition.

References

[1] C. Athanasiadis. Ehrhart polynomials, simplicial polytopes, magic squares and a conjecture of Stanley.
J. Reine Angew. Math., 583:163–174, 2005.
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A Details on the Birkhoff projection

The vertices of the n-th Birkhoff polytope Bn ⊆ Rn
2 ' Rn×n are given by:{

v ∈ Rn×n | v is a permutation matrix
}
.

It is shown in [11, Example 2.6] that the subset

Un :=
{
uk | k ∈ {0, . . . , n− 1}

}
of the vertices of Bn, where

u :=


0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0
0 · · · · · · 0 1
1 0 · · · · · · 0

 ∈ Rn×n,

forms a spine of Bn. In the following we formally define the matrices An, Bn, Cn, and Dn as well as the
translation vector bn that are used in the computations of Section 6. Let m := n− 1 and

Wn :=

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 ∈ Rm×n, Xn :=

0 · · · 0
...

...
0 · · · 0

 ∈ Rm×n,

Yn :=


1 · · · 0
...

. . .
...

0 · · · 1
−1 · · · −1

 ∈ Rn×m, Zn :=

0 · · · 0
...

...
0 · · · 0

 ∈ Rn×m.

Furthermore, let

An :=


Wn Xn · · · Xn Xn

Xn
. . .

. . .
...

...
...

. . .
. . . Xn

...
Xn · · · Xn Wn Xn

 =



1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

0

0 · · · 0
...

...
0 · · · 0

. . .
...

0

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

0 · · · 0
...

...
0 · · · 0


∈ Rm

2×n2

,
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Bn :=



Yn Zn · · · Zn

Zn
. . .

. . .
...

...
. . .

. . . Zn
Zn · · · Zn Yn
−Yn · · · · · · −Yn

 =



1 · · · 0
...

. . .
...

0 · · · 1
−1 · · · −1

0

. . .

0

1 · · · 0
...

. . .
...

0 · · · 1
−1 · · · −1

−1 · · · 0
...

. . .
...

0 · · · −1
1 · · · 1

· · ·

−1 · · · 0
...

. . .
...

0 · · · −1
1 · · · 1



∈ Rn
2×m2

,

Cn :=



em2(2)
...

em2(n)
em2(1) + · · ·+ em2(n)
−em2(1) + em2(n+ 1)

...
−em2(m2 − n) + em2(m2)


=



0 1 0 · · · 0 0 · · · · · · 0
...

. . .
. . .

. . .
...

...
...

...
. . .

. . . 0
...

...
0 · · · · · · 0 1 0 · · · · · · 0
1 · · · · · · · · · 1 0 · · · · · · 0
−1 0 · · · · · · 0 1 0 · · · 0

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 −1 0 · · · · · · 0 1


∈ Rm

2×m2

,

Dn :=
(
0 Im(m−1)

)
∈ Rm(m−1)×m2

bn := −em2(n) ∈ Rm
2

.

Clearly, if An is applied to a vertex v of Bn it simply drops the last row and column of v ∈ Rn×n ' Rn
2

.
The removed entries of v (which is a permutation matrix, i.e. contains exactly one ’1’ in each row and
in each column with all other entries being equal to zero) can obviously be recovered from the remaining
entries and an easy computation shows that this is exactly what Bn does:

BnAnv + an = v

for all vertices v of Bn, where

an :=


0 · · · 0 1
...

...
...

0 · · · 0 1
1 · · · 1 −(n− 2)

 .
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We compute

Bn
TBn =


Yn

T Zn · · · Zn −YnT

Zn
. . .

. . .
... −YnT

...
. . .

. . . Zn −YnT

Zn · · · Zn Yn
T −YnT





Yn Zn · · · Zn

Zn
. . .

. . .
...

...
. . .

. . . Zn
Zn · · · Zn Yn
−Yn · · · · · · −Yn



=


2Yn

TYn Yn
TYn · · · Yn

TYn

Yn
TYn

. . .
. . .

...
...

. . .
. . . Yn

TYn
Yn

TYn · · · Yn
TYn 2Yn

TYn

 =


2Jn Jn · · · Jn

Jn
. . .

. . .
...

...
. . .

. . . Jn
Jn · · · Jn 2Jn

 ∈ Rm
2×m2

with

Jn := Yn
TYn = Im + 1 =


2 1 · · · 1

1
. . .

. . .
...

...
. . .

. . . 1
1 · · · 1 2

 ∈ Rm×m.

Using the following lemma it is easy to show that det(Jn) = n and√
det(Bn

TBn) =
√
nmnm = nm.

Lemma 21. Let m,n ∈ N, A ∈ Rm×m, and

B :=


2A A · · · A

A
. . .

. . .
...

...
. . .

. . . A
A · · · A 2A

 ∈ R(mn)×(mn).

Then det(B) = (n+ 1)m det(A)n.

Proof. Expansion of the first row (of blocks) of B and induction on n.

Furthermore, easy computations show that

|det(Cn)| = 1

and

CnAnUn + bn = {em2(i) | i ∈ {0, . . . , n− 1}} .
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