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Part 1
Untyped lambda calculus

Description of the most basic behaviour of fucntions. For Comparison. Objects
of set theory: sets
1U(<\+)NR,

is a valid statement, in set theory. = depends on the implementation of 1, <
,+, R.

Objects of A-calculus: functions only.

Basic operations of A-calculus: Application and abstraction

Definition. The set A of all A-terms (“set” to make meta-statements on A-
calculus)

(1) (Variable) We have another set V ... set of variables.
IfueVthenueA

(2) (Application) If M, N € A, then (MN) € A
(3) (Abstraction) If uw € V, M € A, then (A\u.M) € A

These are the only ways to construct A-terms.
Short form A =V | (AA) | (AV.A)!

Notation:
e Elements of V : a,b,c,d’,ad",a; a9,...

e Elements of A : A, B,C, A", A” A;, Ay, ... (meta-variables: represent an
arbitrary A-term)

Example. z,y, z, (zz), (z(x2)), Az.(22)), (y(Az.(xz2)) € A

Definition (Syntactical identity =). (zz) = (xz) but (xz) # (zy)

1| stands for “or”, V = {a,b,c, ...} .. .variables, are also functions



Definition. Multiset? Sub of subterms of a A-term
(1) (Variable): Sub(z) = {z} forallz € V
(2) (Application): Sub((MN)) = Sub(M) U Sub(N)U {(MN)}?
(3) (Abstraction): Sub((Az.M)) = Sub(M) U {(Az.M)}

L € A is called a subterm of M € A if L € Sub(M)*

(1) (Reflexivity) M € Sub(M)
(2) (Transitivity) L € Sub(M), M € Sub(N) = L € Sub(N)

5

Example. “tree” of subterms

Sub((y(Az.(22)))) = {(y(Ae.(22))),y, Ar.(22)), (22), z, 2}

VANEAN
€T y y x

"tree" of y(Az.(zz)) "trees" are not commutative

Notation:
e drop outermost brackets: MN = (M N)®
e application is left associative: MNL = ((MN)L)
e abstraction is right associative: Axy.M = Az.(Ay.M) and use only one A

e application takes precedence over abstraction: Az.MN = Ax.(MN)

H.B. Currying: f: R R = f: R— (RR)
(z,y)—z+y
T (f(z) R—>R>

y—zty

(For-Later-Example: (Azy.x)5 —5 Ay.5)

Definition (free, bound, and binding of variables of A-terms). We call FV(M)
the set of free variables of M for M € A

(1) (Variable) FV(x) = {z}

2

may contain identical elements, multiple times

3unions of multisets, {z} U {z} = {z,2} # {z}

(L # M)

5not a tree from graph theory because embedding matters
6= stands for “stands for” (in proper context)



(2) (Application) FV(MN) =FV(M)UFV(N)
(3) (Abstraction) FV(Ax.M) = FV(M) \ {z}

o o freein M if 2 € FV(M)

e x bound in M if x € B(M)

o x binding in M if x € B; (M) :

(1B): B(z) = {}

(2B): B(MN) = B(M) UB(N)

(3B): B(\z.M) = B(M) U ({z} N FV (M))
(3B:): Bi(z) = {}

(3By): B;(MN) = B;(M)UBy(N)

(3B;): Bi(Ax.M) =B;(M)U{z}

Example FVQAz.ay) = FV (zy) \ {z} = (FV(z) UFV (y)) \ {2} = {z,y} \ {«}
V (x (Az.zy)) = {z,y} (here, the 1st x is free, the 2nd is a binding and the
3rd is a bound)

Definition (closed A-term or combinator). M € A is called closed if FV(M) = (.
Denote the set of all closed A-terms by A°

Definition (alpha conversion, renaming, M*7¥% =,). For M € A, z,y € V let
M?*7Y € A denote the A-term obtained by replacing every free occurence of x

by y.
Example. (z (\z.2y))" Y =y (\v.zy)

For M € A, z,y € V withy ¢ FV (M) and y ¢ B;(M) (i.e. y does not occur
in M) we define the notation renaming by \e.M =, \y.M*~Y.

We say “Axz.M has been renamed by Ay.M*—Y”

Conditions on renaming: Renaming should not change the “status” (free,
bound, binding) of the variable

o If y € FV(M): (Ar.y)" Y would become \y.y (y would change its status
from free to bound)

o Ify € By(M) : (\xy.x)* Y would become \yy.y (while the rightmost x is
bound to the first A the rightmost y afterwards is bound to the second \)

(For-Later-Example: (Azy.x)5 — Ay.5 while (Ayy.y)5 =5 Ay.y)
Definition (\-conversion). extend =
(1) (Renaming) A\z.M =, Ay M*7Y if y ¢ FV(M),y ¢ B;(M)

(2) (Compatability)” If M =,, then ML =, NL, LM =, LN, \z.M =,
M. Nforall LeA, z€eV

7 a-conversion within subterms



(3a) (Reflexivity) M =, M
(3b) (Symmetry) M =, N=N=, M
(3¢c) (Tranmsitivity) L =, M,M =, N = L=, N

If M =, N then M and N are said to be a — equivalent.



