Homotopy and Type Theory

February 13, 2018

Part I Untyped lambda calculus

Description of the most basic behaviour of fucntions. For Comparison. Objects of set theory: sets

 $1 \cup (\leq \backslash +) \cap \mathbb{R},$

is a valid statement, in set theory. = depends on the implementation of $1,\leq,+,\mathbb{R}.$

Objects of λ -calculus: *functions only*.

Basic operations of λ -calculus: Application and abstraction

Definition. The set Λ of all λ -terms ("set" to make meta-statements on λ -calculus)

- (1) (Variable) We have another set $V \dots$ set of variables. If $u \in V$ then $u \in \Lambda$
- (2) (Application) If $M, N \in \Lambda$, then $(MN) \in \Lambda$
- (3) (Abstraction) If $u \in V$, $M \in \Lambda$, then $(\lambda u.M) \in \Lambda$

These are the only ways to construct λ -terms. Short form $\overline{\Lambda} = V \mid (\Lambda \Lambda) \mid (\lambda V.\Lambda)^1$

Notation:

- Elements of $V: a, b, c, a', a'', a_{1,a_{2}}, ...$
- Elements of Λ : $A, B, C, A', A'', A_1, A_2, \dots$ (meta-variables: represent an arbitrary λ -term)

Example. $x, y, z, (xx), (x(xz)), (\lambda x.(xz)), (y(\lambda x.(xz)) \in \Lambda)$

Definition (Syntactical identity \equiv). $(xz) \equiv (xz)$ but $(xz) \not\equiv (xy)$

¹| stands for "or", $V = \{a, b, c, \ldots\}$... variables, are also functions

Definition. Multiset² Sub of subterms of a λ -term

- (1) (Variable): $Sub(x) = \{x\}$ for all $x \in V$
- (2) (Application): $\operatorname{Sub}((MN)) = \operatorname{Sub}(M) \cup \operatorname{Sub}(N) \cup \{(MN)\}^3$
- (3) (Abstraction): $\operatorname{Sub}((\lambda x.M)) = \operatorname{Sub}(M) \cup \{(\lambda x.M)\}$

 $L \in \Lambda$ is called a subterm of $M \in \Lambda$ if $L \in \mathrm{Sub}(M)^4$

- (1) (Reflexivity) $M \in \operatorname{Sub}(M)$
- (2) (Transitivity) $L \in \operatorname{Sub}(M), M \in \operatorname{Sub}(N) \Rightarrow L \in \operatorname{Sub}(N)$

Example. "tree"⁵ of subterms

$$Sub((y(\lambda x.(xz)))) = \{(y(\lambda x.(xz))), y, (\lambda x.(xz)), (xz), x, z\}$$

"tree" of $y(\lambda x.(xz))$

Notation:

- drop outermost brackets: $MN = (MN)^6$
- application is left associative: MNL = ((MN)L)
- abstraction is right associative: $\lambda xy.M = \lambda x.(\lambda y.M)$ and use only <u>one λ </u>
- application takes precedence over abstraction: $\lambda x.MN = \lambda x.(MN)$

H.B. Currying: $f : \underset{(x,y)\mapsto x+y}{\mathbb{R}^2} \to \underset{x\mapsto \left(f(x): \underset{y\mapsto x+y}{\mathbb{R}} \to \left(\mathbb{R}^{\mathbb{R}}\right)\right)}{\mathbb{R} \to \left(f(x): \underset{y\mapsto x+y}{\mathbb{R} \to \mathbb{R}}\right)}$ (For-Later-Example: $(\lambda xy.x)5 \to_{\beta} \lambda y.5$)

Definition (free, bound, and binding of variables of λ -terms). We call FV(M) the set of free variables of M for $M \in \Lambda$

(1) (Variable) $FV(x) = \{x\}$

²may contain identical elements, multiple times

³unions of multisets, $\{x\} \cup \{x\} = \{x, x\} \neq \{x\}$

 $[\]frac{4}{2}(L \neq M)$

 $^{^5\}mathrm{not}$ a tree from graph theory because embedding matters

 $^{^{6}}$ = stands for "stands for" (in proper context)

- (2) (Application) $FV(MN) = FV(M) \cup FV(N)$
- (3) (Abstraction) $FV(\lambda x.M) = FV(M) \setminus \{x\}$
- x free in M if $x \in FV(M)$
- $x \underline{bound}$ in M if $x \in B(M)$
- x <u>binding</u> in M if $x \in B_i(M)$:
- (1B): $B(x) = \{\}$
- (2B): $B(MN) = B(M) \cup B(N)$
- (3B): $B(\lambda x.M) = B(M) \cup (\{x\} \cap FV(M))$
- $(3B_i): B_i(x) = \{\}$
- (3B_i): $B_i(MN) = B_i(M) \cup B_i(N)$
- (3B_i): $B_i(\lambda x.M) = B_i(M) \cup \{x\}$

Example. $FV(\lambda x.xy) = FV(xy) \setminus \{x\} = (FV(x) \cup FV(y)) \setminus \{x\} = \{x, y\} \setminus \{x\}$ $FV(x(\lambda x.xy)) = \{x, y\}$ (here, the 1st x is free, the 2nd is a binding and the 3rd is a bound)

Definition (<u>closed</u> λ -term or <u>combinator</u>). $M \in \Lambda$ is called <u>closed</u> if $FV(M) = \emptyset$. Denote the set of all closed λ -terms by Λ°

Definition (alpha conversion, renaming, $M^{x \to y} =_{\alpha}$). For $M \in \Lambda$, $x, y \in V$ let $M^{x \to y} \in \Lambda$ denote the λ -term obtained by replacing every free occurence of x by y.

Example. $(x (\lambda x.xy))^{x \to y} \equiv y (\lambda x.xy)$

For $M \in \Lambda$, $x, y \in V$ with $y \notin FV(M)$ and $y \notin B_i(M)$ (i.e. y does not occur in M) we define the notation <u>renaming</u> by $\lambda x.M =_{\alpha} \lambda y.M^{x \to y}$.

We say " $\lambda x.M$ has been renamed by $\lambda y.M^{x \to y}$ "

Conditions on renaming: Renaming should not change the "status" (free, bound, binding) of the variable

- If $y \in FV(M)$: $(\lambda x.y)^{x \to y}$ would become $\lambda y.y$ (y would change its status from free to bound)
- If $y \in B_i(M) : (\lambda xy.x)^{x \to y}$ would become $\lambda yy.y$ (while the rightmost x is bound to the first λ the rightmost y afterwards is bound to the second λ)

(For-Later-Example: $(\lambda xy.x) 5 \rightarrow_{\beta} \lambda y.5$ while $(\lambda yy.y) 5 \rightarrow_{B} \lambda y.y$)

Definition (λ -conversion). extend $=_{\lambda}$

- (1) (Renaming) $\lambda x.M =_{\alpha} \lambda y.M^{x \to y}$ if $y \notin FV(M), y \notin B_i(M)$
- (2) (Compatability)⁷ If $M =_{\alpha}$, then $ML =_{\alpha} NL$, $LM =_{\alpha} LN$, $\lambda z.M =_{\alpha} \lambda z.N$ for all $L \in \Lambda$, $z \in V$

 $^{^7\}alpha\text{-}\mathrm{conversion}$ within subterms

- (3a) (Reflexivity) $M =_{\alpha} M$
- (3b) (Symmetry) $M =_{\alpha} N \Rightarrow N =_{\alpha} M$
- (3c) (Transitivity) $L=_{\alpha}M, M=_{\alpha}N \Rightarrow L=_{\alpha}N$

If $M =_{\alpha} N$ then M and N are said to be α -equivalent.