Homotopy and Type Theory

February 13, 2018

Part I

Untyped lambda calculus

Description of the most basic behaviour of fucntions. For Comparison. Objects of set theory: sets

$$
1 \cup(\leq \backslash+) \cap \mathbb{R}
$$

is a valid statement, in set theory. = depends on the implementation of $1, \leq$,,$+ \mathbb{R}$.

Objects of λ-calculus: functions only.
Basic operations of λ-calculus: Application and abstraction
Definition. The set Λ of all λ-terms ("set" to make meta-statements on λ calculus)
(1) (Variable) We have another set $V \ldots$ set of variables. If $u \in V$ then $u \in \Lambda$
(2) (Application) If $M, N \in \Lambda$, then $(M N) \in \Lambda$
(3) (Abstraction) If $u \in V, M \in \Lambda$, then $(\lambda u \cdot M) \in \Lambda$

These are the only ways to construct λ-terms.
Short form $\bar{\Lambda}=V|(\Lambda \Lambda)|(\lambda V \cdot \Lambda)^{1}$

Notation:

- Elements of $V: a, b, c, a^{\prime}, a^{\prime \prime}, a_{1}, a_{2}, \ldots$
- Elements of Λ : $A, B, C, A^{\prime}, A^{\prime \prime}, A_{1}, A_{2}, \ldots$ (meta-variables: represent an arbitrary λ-term)

Example. $x, y, z,(x x),(x(x z)),(\lambda x .(x z)),(y(\lambda x .(x z)) \in \Lambda$
Definition (Syntactical identity \equiv).$(x z) \equiv(x z)$ but $(x z) \not \equiv(x y)$

[^0]Definition. Multiset ${ }^{2}$ Sub of subterms of a λ-term
(1) (Variable): $\operatorname{Sub}(x)=\{x\}$ for all $x \in V$
(2) (Application): $\operatorname{Sub}((M N))=\operatorname{Sub}(M) \cup \operatorname{Sub}(N) \cup\{(M N)\}^{3}$
(3) (Abstraction): $\operatorname{Sub}((\lambda x . M))=\operatorname{Sub}(M) \cup\{(\lambda x . M)\}$
$L \in \Lambda$ is called a subterm of $M \in \Lambda$ if $L \in \operatorname{Sub}(M)^{4}$
(1) (Reflexivity) $M \in \operatorname{Sub}(M)$
(2) (Transitivity) $L \in \operatorname{Sub}(M), M \in \operatorname{Sub}(N) \Rightarrow L \in \operatorname{Sub}(N)$

Example. "tree" ${ }^{5}$ of subterms

$$
\operatorname{Sub}((y(\lambda x .(x z))))=\{(y(\lambda x .(x z))), y,(\lambda x .(x z)),(x z), x, z\}
$$

"tree" of $y(\lambda x .(x z)) \quad$ "trees" are not commutative

Notation:

- drop outermost brackets: $M N=(M N)^{6}$
- application is left associative: $M N L=((M N) L)$
- abstraction is right associative: $\lambda x y \cdot M=\lambda x \cdot(\lambda y \cdot M)$ and use only one λ
- application takes precedence over abstraction: $\lambda x \cdot M N=\lambda x \cdot(M N)$
H.B. Currying: $f: \underset{(x, y) \mapsto x+y}{\mathbb{R}^{2} \rightarrow \mathbb{R}} \rightarrow \bar{f}: \quad \mathbb{R} \rightarrow\left(\mathbb{R}^{\mathbb{R}}\right)$

$$
x \mapsto(f(x): \underset{\substack{R \rightarrow \mathbb{R} \\ y \mapsto x+y}}{R})
$$

(For-Later-Example: $\left.(\lambda x y . x) 5 \rightarrow_{\beta} \lambda y .5\right)$
Definition (free, bound, and binding of variables of λ-terms). We call $\mathrm{FV}(M)$ the set of free variables of M for $M \in \Lambda$
(1) (Variable) $\mathrm{FV}(x)=\{x\}$

[^1](2) (Application) $\mathrm{FV}(M N)=\mathrm{FV}(M) \cup \mathrm{FV}(N)$
(3) (Abstraction) $\mathrm{FV}(\lambda x . M)=\mathrm{FV}(M) \backslash\{x\}$

- $x \underline{\text { free }}$ in M if $x \in \mathrm{FV}(M)$
- x bound in M if $x \in \mathrm{~B}(M)$
- x binding in M if $x \in \mathrm{~B}_{i}(M)$:
(1B): $\mathrm{B}(x)=\{ \}$
$(2 \mathrm{~B}): \mathrm{B}(M N)=\mathrm{B}(M) \cup \mathrm{B}(N)$
$(3 \mathrm{~B}): \mathrm{B}(\lambda x . M)=\mathrm{B}(M) \cup(\{x\} \cap \mathrm{FV}(M))$
$\left(3 \mathrm{~B}_{i}\right): \mathrm{B}_{i}(x)=\{ \}$
$\left(3 \mathrm{~B}_{i}\right): \mathrm{B}_{i}(M N)=\mathrm{B}_{i}(M) \cup \mathrm{B}_{i}(N)$
$\left(3 \mathrm{~B}_{i}\right): \mathrm{B}_{i}(\lambda x . M)=\mathrm{B}_{i}(M) \cup\{x\}$
Example. $\mathrm{FV}(\lambda x . x y)=\mathrm{FV}(x y) \backslash\{x\}=(\mathrm{FV}(x) \cup \mathrm{FV}(y)) \backslash\{x\}=\{x, y\} \backslash\{x\}$
FV $(x(\lambda x . x y))=\{x, y\}$ (here, the 1st x is free, the 2 nd is a binding and the 3 rd is a bound)
Definition (closed λ-term or combinator).$~ M \in \Lambda$ is called closed if $\mathrm{FV}(M)=\emptyset$. Denote the set of all closed λ-terms by Λ°

Definition (alpha conversion, renaming, $M^{x \rightarrow y},={ }_{\alpha}$). For $M \in \Lambda, x, y \in V$ let $M^{x \rightarrow y} \in \Lambda$ denote the λ-term obtained by replacing every free occurence of x by y.

Example. $(x(\lambda x . x y))^{x \rightarrow y} \equiv y(\lambda x . x y)$
For $M \in \Lambda, x, y \in V$ with $y \notin \mathrm{FV}(M)$ and $y \notin \mathrm{~B}_{i}(M)$ (i.e. y does not occur in M) we define the notation renaming by $\lambda x \cdot M={ }_{\alpha} \lambda y \cdot M^{x \rightarrow y}$.

We say " $\lambda x . M$ has been renamed by $\lambda y . M^{x \rightarrow y "}$
Conditions on renaming: Renaming should not change the "status" (free, bound, binding) of the variable

- If $y \in \operatorname{FV}(M):(\lambda x . y)^{x \rightarrow y}$ would become $\lambda y . y$ (y would change its status from free to bound)
- If $y \in \mathrm{~B}_{i}(M):(\lambda x y . x)^{x \rightarrow y}$ would become $\lambda y y . y$ (while the rightmost x is bound to the first λ the rightmost y afterwards is bound to the second λ)
(For-Later-Example: $(\lambda x y . x) 5 \rightarrow_{\beta} \lambda y .5$ while $(\lambda y y . y) 5 \rightarrow_{B} \lambda y . y$)
Definition (λ-conversion). extend $=_{\lambda}$
(1) (Renaming) $\lambda x \cdot M={ }_{\alpha} \lambda y \cdot M^{x \rightarrow y}$ if $y \notin \mathrm{FV}(M), y \notin \mathrm{~B}_{i}(M)$
(2) (Compatability) ${ }^{7}$ If $M={ }_{\alpha}$, then $M L={ }_{\alpha} N L, L M={ }_{\alpha} L N, \lambda z \cdot M={ }_{\alpha}$ $\lambda z . N$ for all $L \in \Lambda, z \in V$

[^2](3a) (Reflexivity) $M={ }_{\alpha} M$
(3b) (Symmetry) $M={ }_{\alpha} N \Rightarrow N={ }_{\alpha} M$
(3c) (Transitivity) $L={ }_{\alpha} M, M={ }_{\alpha} N \Rightarrow L={ }_{\alpha} N$
If $M={ }_{\alpha} N$ then M and N are said to be α-equivalent.

[^0]: ${ }^{1} \mid$ stands for "or", $V=\{a, b, c, \ldots\} \ldots$ variables, are also functions

[^1]: ${ }^{2}$ may contain identical elements, multiple times
 ${ }^{3}$ unions of multisets, $\{x\} \cup\{x\}=\{x, x\} \neq\{x\}$
 ${ }^{4}(L \neq M)$
 ${ }^{5}$ not a tree from graph theory because embedding matters
 $6=$ stands for "stands for" (in proper context)

[^2]: ${ }^{7} \alpha$-conversion within subterms

