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Motivation: An arithmetic constant

Let K : Number field

S : Finite set of places of K , containing Archimedian ones

ωK : Number of roots of unity of K

RegK ,S : S-regulator of K

q ∈ R>0

n ∈ N
s := |S | − 1

uK ,S(n; q) : Number of representations of algebraic integers α

with
∣∣NK/Q(α)

∣∣ ≤ q that can be written as sums

of exactly n S-units

Theorem (Fuchs, Tichy, Ziegler 2009)

uK ,S(n; q) =
cn−1,s
n!

(
ωK log(q)s

RegK ,S

)n−1

+ o(log(q)(n−1)s−1+ε) (q →∞)
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A family of convex polytopes

cn,s is the volume of

Pn,s := {(x1,1, . . . , xn,s) ∈ Rns | gn,s(x1,1, . . . , xn,s) ≤ 1}

where

gn,s

x1,1 . . . x1,s
...

...
xn,1 . . . xn,s

 := max


0
x1,1

...
xn,1

+ · · ·+ max


0
x1,s

...
xn,s

+

max


0

−x1,1 − · · · − x1,s
...

−xn,1 − · · · − xn,s


Note: Identify Rns and Rn×s



A family of convex polytopes

n\s 1 2 3 4 5

1 2 3 10/3 35/12 21/10

2 3 15/4 7/3 55/64

3 4 7/2 55/54

4 5 45/16

5 6

Table: Values of cn,s = λns(Pn,s)

Previous results by Barroero, Frei, Fuchs, Tichy, and Ziegler:

Formulas for cn,1, cn,2, c1,s



A family of convex polytopes

gn,s

x1,1 . . . x1,s
...

...
xn,1 . . . xn,s

 := max


0
x1,1

...
xn,1

+ · · ·+ max


0
x1,s

...
xn,s

+

max


0

−x1,1 − · · · − x1,s
...

−xn,1 − · · · − xn,s


Pn,s := {(x1,1, . . . , xn,s) ∈ Rns | gn,s(x1,1, . . . , xn,s) ≤ 1}

Pn,s is a • closed non-degenerate convex polytope
• of dimension ns
• contained in [−1, 1]ns

• with boundary ∂(Pn,s) = {x ∈ Rns | gn,s(x) = 1}
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A family of convex polytopes

Figure: P1,1, P1,2, P1,3, P2,1, P3,1



A family of convex polytopes: Volume

Main theorem (Kerber, Tichy, W.)

cn,s =
1

(s!)n+1

((n + 1)s)!

(ns)!

for all n, s ∈ N



A family of convex polytopes: Vertices

Theorem

Let n, s ∈ N and V(Pn,s) the set of vertices of Pn,s . Then

V(Pn,s) = Un,s ∪ Vn,s

where

Un,s :=
{
x ∈ {−1, 0}n×s | • at least one ’−1’

• at most one ’−1’ per row
}

Vn,s :=
{
x ∈ {−1, 0, 1}n×s | • at least one ’1’

• all ’1’s in a single column (the “’1’-column”)

• all entries of the ’1’-column are ’0’ or ’1’

• all rows with a ’1’ contain at most one ’−1’

• all rows without a ’1’ contain only ’0’s
}

In particular: Pn,s = conv(Un,s ∪ Vn,s)
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A family of convex polytopes: Vertices

Un,s :=
{
x ∈ {−1, 0}n×s | • at least one ’−1’

• at most one ’−1’ per row
}

Example: n = 2 and s = 3

U2,3 =
{

(
0 0 0
-1 0 0

)
,

(
0 0 0
0 -1 0

)
,

(
0 0 0
0 0 -1

)
,(

-1 0 0
0 0 0

)
,

(
-1 0 0
-1 0 0

)
,

(
-1 0 0
0 -1 0

)
,

(
-1 0 0
0 0 -1

)
,(

0 -1 0
0 0 0

)
,

(
0 -1 0
-1 0 0

)
,

(
0 -1 0
0 -1 0

)
,

(
0 -1 0
0 0 -1

)
,(

0 0 -1
0 0 0

)
,

(
0 0 -1
-1 0 0

)
,

(
0 0 -1
0 -1 0

)
,

(
0 0 -1
0 0 -1

)}



A family of convex polytopes: Vertices

Vn,s :=
{
x ∈ {−1, 0, 1}n×s | • at least one ’1’

• all ’1’s in a single column (the “’1’-column”)

• all entries of the ’1’-column are ’0’ or ’1’

• all rows with a ’1’ contain at most one ’−1’

• all rows without a ’1’ contain only ’0’s
}

Example: n = 2 and s = 3

V2,3 =
{

(
1 0 0
0 0 0

)
,

(
1 -1 0
0 0 0

)
,

(
1 0 -1
0 0 0

)
,

(
0 0 0
1 0 0

)
,

(
0 0 0
1 -1 0

)
,

(
0 0 0
1 0 -1

)
,(

1 0 0
1 0 0

)
,

(
1 0 0
1 -1 0

)
,

(
1 0 0
1 0 -1

)
,

(
1 -1 0
1 0 0

)
,

(
1 -1 0
1 -1 0

)
,

(
1 -1 0
1 0 -1

)
,

(
1 0 -1
1 0 0

)
,

(
1 0 -1
1 -1 0

)
,

(
1 0 -1
1 0 -1

)
(

0 1 0
0 0 0

)
,

(
-1 1 0
0 0 0

)
,

(
0 1 -1
0 0 0

)
,

(
0 0 0
0 1 0

)
,

(
0 0 0
-1 1 0

)
,

(
0 0 0
0 1 -1

)
,(

0 1 0
0 1 0

)
,

(
0 1 0
-1 1 0

)
,

(
0 1 0
0 1 -1

)
,

(
-1 1 0
0 1 0

)
,

(
-1 1 0
-1 1 0

)
,

(
-1 1 0
0 1 -1

)
,

(
0 1 -1
0 1 0

)
,

(
0 1 -1
-1 1 0

)
,

(
0 1 -1
0 1 -1

)
(

0 0 1
0 0 0

)
,

(
0 -1 1
0 0 0

)
,

(
-1 0 1
0 0 0

)
,

(
0 0 0
0 0 1

)
,

(
0 0 0
0 -1 1

)
,

(
0 0 0
-1 0 1

)
,(

0 0 1
0 0 1

)
,

(
0 0 1
0 -1 1

)
,

(
0 0 1
-1 0 1

)
,

(
0 -1 1
0 0 1

)
,

(
0 -1 1
0 -1 1

)
,

(
0 -1 1
-1 0 1

)
,

(
-1 0 1
0 0 1

)
,

(
-1 0 1
0 -1 1

)
,

(
-1 0 1
-1 0 1

)}



A family of convex polytopes: A closer look

Corollary

cn,s is integer multiple of 1/(ns)!

1/(ns)!: Volume of standard simplex conv({0, e1, . . . , ens})



A family of convex polytopes: A closer look

n\s 1 2 3 4

1 2 3 10/3 35/12

2 3 15/4 7/3 55/64

3 4 7/2 55/54

4 5 45/16

Table: Values of cn,s = λns(Pn,s)

n\s 1 2 3 4

1 2 6 20 70

2 6 90 1680 34650

3 24 2520 369600

4 120 113400

Table: Values of cn,s(ns)!

Reminder: cn,s = 1
(s!)n+1

((n+1)s)!
(ns)! =

(
(n+1)s
s,...,s

)
1

(ns)!
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A family of convex polytopes: A closer look

Corollary

Pn,s is the disjoint union of 2ns smaller convex polytopes

Introduce additional vertex 0 ∈ int(Pn,s)



A family of convex polytopes: A closer look

“Normed volumes” of the 2ns parts?

n = 1, s = 1:
≤: 1
≥: 1

Figure: P1,1
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Figure: P1,2
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“Normed volumes” of the 2ns parts?

n = 1, s = 1:
≤: 1
≥: 1
n = 1, s = 2:
≤≤: 1
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n = 1, s = 3:
≤≤≤: 1
≤≤≥: 3
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≥≤≥: 3
≥≥≤: 3
≥≥≥: 1

Figure: P1,3



A family of convex polytopes: A closer look

“Normed volumes” of the 2ns parts?

n = 1, s = 1:
≤: 1
≥: 1
n = 1, s = 2:
≤≤: 1
≤≥: 2
≥≤: 2
≥≥: 1
n = 1, s = 3:
≤≤≤: 1
≤≤≥: 3
≤≥≤: 3
≤≥≥: 3
≥≤≤: 3
≥≤≥: 3
≥≥≤: 3
≥≥≥: 1

n = 2, s = 1:
≤≤: 2
≤≥: 1
≥≤: 1
≥≥: 2

Figure: P2,1



A family of convex polytopes: A closer look

“Normed volumes” of the 2ns parts?

n = 1, s = 1:
≤: 1
≥: 1
n = 1, s = 2:
≤≤: 1
≤≥: 2
≥≤: 2
≥≥: 1
n = 1, s = 3:
≤≤≤: 1
≤≤≥: 3
≤≥≤: 3
≤≥≥: 3
≥≤≤: 3
≥≤≥: 3
≥≥≤: 3
≥≥≥: 1

n = 2, s = 1:
≤≤: 2
≤≥: 1
≥≤: 1
≥≥: 2
n = 2, s = 2:
≤≤≤≤: 6
≤≤≤≥: 4
≤≤≥≤: 4
≤≤≥≥: 1...

n = 2, s = 3:
≤≤≤≤≤≤: 20
≤≤≤≤≤≥: 15
≤≤≤≤≥≤: 15
≤≤≤≤≥≥: 6...
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A family of convex polytopes: A closer look

“Normed volumes” of the 2ns parts?

n = 1, s = 1:
≤: 1
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≤≤: 1
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n = 1, s = 3:
≤≤≤: 1
≤≤≥: 3
≤≥≤: 3
≤≥≥: 3
≥≤≤: 3
≥≤≥: 3
≥≥≤: 3
≥≥≥: 1

n = 2, s = 1:
≤≤: 2
≤≥: 1
≥≤: 1
≥≥: 2
n = 2, s = 2:
≤≤≤≤: 6
≤≤≤≥: 4
≤≤≥≤: 4
≤≤≥≥: 1...
n = 2, s = 3:
≤≤≤≤≤≤: 20
≤≤≤≤≤≥: 15
≤≤≤≤≥≤: 15
≤≤≤≤≥≥: 6...

n = 3, s = 1:
≤≤≤: 6
≤≤≥: 2
≤≥≤: 2
≤≥≥: 2
≥≤≤: 2
≥≤≥: 2
≥≥≤: 2
≥≥≥: 6...

Figure: P3,1



A family of convex polytopes: A closer look

“Normed volumes” of the 2ns parts?

n = 1, s = 1:
≤: 1
≥: 1
n = 1, s = 2:
≤≤: 1
≤≥: 2
≥≤: 2
≥≥: 1
n = 1, s = 3:
≤≤≤: 1
≤≤≥: 3
≤≥≤: 3
≤≥≥: 3
≥≤≤: 3
≥≤≥: 3
≥≥≤: 3
≥≥≥: 1

n = 2, s = 1:
≤≤: 2
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≥≤: 1
≥≥: 2
n = 2, s = 2:
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≤≤≤≥: 4
≤≤≥≤: 4
≤≤≥≥: 1...
n = 2, s = 3:
≤≤≤≤≤≤: 20
≤≤≤≤≤≥: 15
≤≤≤≤≥≤: 15
≤≤≤≤≥≥: 6...

n = 3, s = 1:
≤≤≤: 6
≤≤≥: 2
≤≥≤: 2
≤≥≥: 2...
n = 3, s = 2:
≤≤≤≤≤≤: 90
≤≤≤≤≤≥: 36
≤≤≤≤≥≤: 36
≤≤≤≤≥≥: 6...

n = 3, s = 3:
≤≤≤≤≤≤≤≤≤: 1680
≤≤≤≤≤≤≤≤≥: 720
≤≤≤≤≤≤≤≥≤: 720
≤≤≤≤≤≤≤≥≥: 180...

n = 1, s = 1:
2

n = 1, s = 2:
6

n = 1, s = 3:
20

n = 2, s = 1:
6

n = 2, s = 2:
90

n = 2, s = 3:
1680
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A family of convex polytopes: A closer look

“Normed volumes” of the 2ns parts?

n = 1, s = 1:
≤: 1
≥: 1
n = 1, s = 2:
≤≤: 1
≤≥: 2
≥≤: 2
≥≥: 1
n = 1, s = 3:
≤≤≤: 1
≤≤≥: 3
≤≥≤: 3
≤≥≥: 3
≥≤≤: 3
≥≤≥: 3
≥≥≤: 3
≥≥≥: 1

n = 2, s = 1:
≤≤: 2
≤≥: 1
≥≤: 1
≥≥: 2
n = 2, s = 2:
≤≤≤≤: 6
≤≤≤≥: 4
≤≤≥≤: 4
≤≤≥≥: 1...
n = 2, s = 3:
≤≤≤≤≤≤: 20
≤≤≤≤≤≥: 15
≤≤≤≤≥≤: 15
≤≤≤≤≥≥: 6...

n = 3, s = 1:
≤≤≤: 6
≤≤≥: 2
≤≥≤: 2
≤≥≥: 2...
n = 3, s = 2:
≤≤≤≤≤≤: 90
≤≤≤≤≤≥: 36
≤≤≤≤≥≤: 36
≤≤≤≤≥≥: 6...
n = 3, s = 3:
≤≤≤≤≤≤≤≤≤: 1680
≤≤≤≤≤≤≤≤≥: 720
≤≤≤≤≤≤≤≥≤: 720
≤≤≤≤≤≤≤≥≥: 180...

n = 1, s = 1:
2

n = 1, s = 2:
6

n = 1, s = 3:
20

n = 2, s = 1:
6

n = 2, s = 2:
90

n = 2, s = 3:
1680



A family of convex polytopes: A closer look

n\s 1 2 3 4

1 2 6 20 70

2 6 90 1680 34650

3 24 2520 369600

4 120 113400

Table: Normed volumes of Pn,s

n\s 1 2 3 4

1 1 1 1 1

2 2 6 20 70

3 6 90 1680 34650

4 24 2520 369600

Table: Normed volumes of “bottom-left quadrant” of Pn,s



A family of convex polytopes: The “bottom-left quadrant”

Reminder: V(Pn,s) = Un,s ∪ Vn,s where

Un,s :=
{
x ∈ {−1, 0}n×s | • at least one ’−1’

• at most one ’−1’ per row
}

Vn,s :=
{
x ∈ {−1, 0, 1}n×s | • at least one ’1’

• all ’1’s in a single column (the “’1’-column”)

• all entries of the ’1’-column are ’0’ or ’1’

• all rows with a ’1’ contain at most one ’−1’

• all rows without a ’1’ contain only ’0’s
}

Bottom-left quadrant:

Sn,s := conv(Un,s ∪ {0})

= conv
({

x ∈ {−1, 0}n×s | at most one ’−1’ per row
})

= conv
({

x ∈ {−1, 0}s | at most one ’−1’
})n

(Cartesian product)

= conv
({

0,−e1, . . . ,−es
})n



A family of convex polytopes: The “bottom-left quadrant”
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: s-dimensional simplex

Cartesian product of simplices: Simplotope

Special case n = 1: 1-fold product of simplex: s-dimensional simplex
Special case s = 1: n-fold product of [−1, 0]: n-dimensional hypercube
Special case s = 2: n-fold product of conv({(0, 0), (−1, 0), (0,−1)})
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(Fubini)

= 1/(s!)n

λns(Pn,s)(ns)! = λ(n+1)s(Sn+1,s)((n + 1)s)! = 1/(s!)n+1((n + 1)s)!

Thus cn,s = λns(Pn,s) = 1
(s!)n+1

((n+1)s)!
(ns)!
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A family of convex polytopes: The “bottom-left quadrant”

Figure: P2,1 and P3,1

Left to show: Normed volume of Pn,s = Normed volume of Sn+1,s

Counting vertices: |Un,s | = (s + 1)n − 1
|Vn,s | = s((s + 1)n − 1)

|V(Pn,s)| = |Un,s |+ |Vn,s | = (s + 1)n+1 − s − 1
|V(Sn+1,s)| = |Un+1,s |+ |{0}| = (s + 1)n+1

|V(Sn+1,s)| − |V(Pn,s)| = s + 1
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A family of convex polytopes: A linear transformation

Figure: P2,1 and P3,1

Left to show: Normed volume of Pn,s = Normed volume of Sn+1,s

Theorem

Let

Mn,s :=

 −Is
Ins

...
−Is

 =


1 0 −1 0. . .

. . .. . . 0 −1. . .
.... . . −1 0. . .

. . .
0 1 0 −1

 ∈ R(ns)×((n+1)s)

Then Mn,sSn+1,s = Pn,s
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What happens to the vertices?

Remember: |V(Sn+1,s)| − |V(Pn,s)| = s + 1

Let Wn,s :=
{
x ∈ {−1, 0}n×s | • exactly one ’−1’ per row

• all ’−1’s in a single column
}
⊆ Un,s

Then |Wn,s | = s

Mn,s(V(Sn+1,s) \ (Wn+1,s ∪ {0})) = V(Pn,s)

Mn,s(Wn+1,s ∪ {0}) = {0}
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A family of convex polytopes: A linear transformation

Let

M ′n,s :=

(
Mn,s

0 Is

)
=



1 0 −1 0. . .
. . .. . . 0 −1. . .
.... . . −1 0. . .

. . .
0 1 0 −1
0 0 1 0. . .
0 0 0 1


∈ R((n+1)s)×((n+1)s)

Nn,s := (Ins | 0) ∈ R(ns)×(n+1)s (projection matrix)

Then Mn,s = Nn,sM
′
n,s

det(M ′n,s) = 1

Problem: Everything can happen under projection!
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• How to compute the volume of any polytope?

• Find simplicial decomposition and sum up volumes of simplices!

• Finding simplicial decomposition of the complicated Pn,s : Hopeless!

• Idea: Find simplicial decomposition of the simpler Sn+1,s and map it via
Mn,s = Nn,sM

′
n,s

• Two possible problems: 1) Projections of simplices need not be
simplices

2) The projections of two non-overlapping
(disjoint interior) simplices might overlap

• Need a very special simplicial decomposition of Sn+1,s
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A family of convex polytopes: A special triangulation

Simplicial decomposition of Sn+1,s

Wish list: • Simplices should map to simplices

• Non-overlapping simplices should map to non-overlapping
simplices

• Simple relationship between volume of simplex and volume
of mapped simplex (if main theorem is true the normed
volumes should be equal)

Known triangulation of simplotope Sn+1,s : Staircase triangulation

Does it work?

• Normed volume of P1,3: c1,33! = λ3(P1,3)3! = 20
• Staircase triangulation of S2,3: 20 simplices, all have normed volume 1
• Normed volumes of projections: 1, 1, 2, 1, 1, 2, 2, 2, 3, 4,

1, 1, 2, 1, 1, 2, 2, 2, 3, 4
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• Non-overlapping simplices should map to non-overlapping
simplices

• Simple relationship between volume of simplex and volume
of mapped simplex (if main theorem is true the normed
volumes should be equal)

Reminder: |Wn,s | = s

Mn,s(V(Sn+1,s) \ (Wn+1,s ∪ {0})) = V(Pn,s)

Mn,s(Wn+1,s ∪ {0}) = {0}

Simplex in R(n+1)s : (n + 1)s + 1 = ns + 1 + s vertices
Simplex in Rns : ns + 1 vertices

Idea: Find simplicial decomposition of Sn+1,s such that all simplices have
all elements of Wn,s as common vertices
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Lifting theorem (Kerber, Tichy, W.)

Let • d , d ′ ∈ N, d ′ < d , N := (Id′ , 0) ∈ Rd′×d (projection matrix)
• m ∈ N, n := d − d ′ + 1
• p1, . . . ,pm,q1, . . . ,qn ∈ Rd in convex position such that
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Thank you for your attention!
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