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Elements of DE,O) are said to have the finiteness property.

D‘(jo) C Dy



Definitions



Definitions



Definitions



Definitions

Example:

d=2
= (3, B) e R?

(31, 2)) = (%2, — [rx])

(0,3) == (3,-3) == (-3,2)



Definitions

Example:

d=2
= (3, B) e R?

(31, 2)) = (%2, — [rx])

(0,3) ™ (3,-3) = (=3,2) /= (2,1)



Example:

d=2
= (3, B) e R?

(31, 2)) = (%2, — [rx])

(0,3) = (3,-3) == (-3,2) = (2,1) =

= (1,-3)

Definitions



Example:

d=2
r= (3 B)e R
7((a, %)) = (2, — [rx))

(0,3) = (3,-3) == (-3,2) = (2,1) =

> (1,-3) =

Definitions

+(=3,3)



Definitions

Example:

d=2
= (3, B) e R?

(31, 2)) = (%2, — [rx])

(0,3) == (3,-3) == (-3,2) == (2,1) = (1,-3) == (-3,3)
5 (3,-1)



Definitions

Example:

d=2
= (3, B) e R?

(31, 2)) = (%2, — [rx])

(0,3) == (3,-3) == (-3,2) == (2,1) = (1,-3) == (-3,3)

— (3,-1) — (-1,-1)



Definitions

Example:

d=2
= (3, B) e R?

(31, 2)) = (%2, — [rx])

(0,3) = (3,-3) = (— 32)—>(2 1) = (1,-3) == (-3,3)
5 (3,-1) == (-1,-1) = (-1,3)



Definitions

Example:

d=2
= (3, B) e R?

(31, 2)) = (%2, — [rx])

(0,3) = (3,-3) = (— 32)—>(2 1) = (1,-3) == (-3,3)
53, -1) = (—1,-1) = (~1,3) == (3,-3)



Example:

d=2
= (3, B) e R?

(31, 2)) = (%2, — [rx])

(0,3) = (3,-3) = (— 32)—>(2 1) (1, —3)
53, -1) = (~1,-1) =5 (-1,3) == (3,-3) =
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Definitions

Example:

d=

r= (1% ByeRr?

Te((x1, x2)) = (%2, — [rx])

(0,3) ™ (3,-3) = (— 32) “(2,1) = (1,-3) —» (-3,3)
5 (3,-1) 5 (—1,-1) T (-1,3) 5 (3,-3) = (-3,2)

Orbit of (0, 3) ultimately periodic!
r e Dy?
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Let 8 > 1 be a non-integral, real number.

Then A:={0,1,...,|5]} is called the set of digits,
as every v € [0,00) can be represented uniquely in the form

Y= amﬁm + am—lﬁm_1 + -
(greedy expansion of v with respect to 3)

with m € Z and a; € A, such that
0<y—Y ap <p
i=k

holds for all kK < m.
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If Fin(8) = Z[5] N [0,1) then 3 is said to have property (F).

In that case 8 is an algebraic integer (furthermore a Pisot number) and
therefore has a minimal polynomial

X9 +ag 1 X9+ + a1 X + a0 € Z[X]
which can be written as
(X =B) (X9 +rgoX9 2+ +nX+n)

Then § has property (F) < (ro,...,r4—2) € Dgo_)l (AKIYAMA et al.
2005)
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A similar relation can be shown for CNS:
Let P(X) = X9+ pg_1 X9+ + p1 X + po € Z[X]

Then P is a CNS polynomial <= (p—lo, p‘;};‘ o2 B e DE,O)
(AKIYAMA et al. 2005)




Basic properties of SRS

Forr=(r,...,rq) €RY let
0 1 0 0
R = SO
0 0 1
_rl _r2 e DR _rd

— the companion matrix of x,(X) = X9 + rgX9 1+ .. + X + .



Basic properties of SRS

Forr=(r,...,rq) €RY let
0 1 0 0
R = SO
0 0 1
_rl _r2 e DR _rd

— the companion matrix of x,(X) = X9 + rgX9 1+ .. + X + .

Then 7(x) = Rex + vy where vy, = (0,...,0, {rx}).



Basic properties of SRS

Forr=(r,...,rq) €RY let
0 1 0 0
R = 0
0 0 1
_rl _r2 e DR _rd

— the companion matrix of x,(X) = X9 + rgX9 1+ .. + X + .
Then 7(x) = Rex + vy where vy, = (0,...,0, {rx}).

Let p(M) denote the spectral radius of a matrix.
(i.e. the maximum absolute value of eigenvalues)



Basic properties of SRS

Forr=(r,...,rq) €RY let
0 1 0 0
R = 0
0 0 1
_rl _r2 e DR _rd

— the companion matrix of x,(X) = X9 + rgX9 1+ .. + X + .
Then 7(x) = Rex + vy where vy, = (0,...,0, {rx}).

Let p(M) denote the spectral radius of a matrix.
(i.e. the maximum absolute value of eigenvalues)

Then
eDy C{reR|p(R)<1)



Basic properties of SRS

Forr=(r,...,rq) €RY let
0 1 0 0
R = 0
0 0 1
_rl _r2 e DR _rd

— the companion matrix of x,(X) = X9 + rgX9 1+ .. + X + .
Then 7(x) = Rex + vy where vy, = (0,...,0, {rx}).

Let p(M) denote the spectral radius of a matrix.
(i.e. the maximum absolute value of eigenvalues)

Then
Dy C{reR?|p(R)<1}
. {reRY | p(R) <1} C Dy



Basic properties of SRS

Forr=(r,...,rq) €RY let
0 1 0 0
R = 0
0 0 1
_rl _r2 e DR _rd

— the companion matrix of x,(X) = X9 + rgX9 1+ .. + X + .
Then 7(x) = Rex + vy where vy, = (0,...,0, {rx}).

Let p(M) denote the spectral radius of a matrix.
(i.e. the maximum absolute value of eigenvalues)

Then
Dy C{reR?|p(R)<1}
. {reRY | p(R) <1} C Dy

¢ 9Dy = {reRY | p(R,) =1}
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Characterization of DE,O) — Two important concepts

Sets of witnesses

A set V C Z9 is called a set of witnesses for r € RY iff it is stable under
Ty and 77 = —7, o (—id,4) and contains a generating set of the group
(Z9,+) which is closed under taking inverses.

Every such set of witnesses has the decisive property:
reDE,O)@Vae V:3neN:7(a)=0
Find a finite set of witnesses iteratively for r € int (Dy):

Vo i= {(£1,0,...,0),....(0,...,0,+1)}
VneN:V, = V,,_lUTr(Vn_l)UTf(Vn_l)

V, = U V,

neNg
(BRUNOTTE 2001)
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Characterization of D’ — Previous results

o D; = [-1,1], D = [0,1)
e D, C{(x,y) €ER? | x> |y|-1Ax <1}

o Several regions of Dgo) have been
characterized by AKIYAMA et al. in
2005

e Adaptation of the concept of sets of
witnesses leads to an algorithm due to
Brunotte

Applied by SURER 2008 to characterize
ﬁ{ x,y) € R? | x < L} where

L_o
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Characterization of DE,O) — New results

Theorem (M.W.):

. Déo) has at least 22 connected components

)

e The largest connected component of Dgo has at least 3 holes
Result achieved by a new algorithm which has been used to characterize

Dgo) N{(x,y) € R? | x < L} where L = 311
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Two new algorithms

Basic concept:

Divide a given convex region inside the interior of Dy into finitely many
classes.

Each class is either contained in Dgo) or has empty intersection with it.

Handle classes in a sophisticated order to minimize computation time!
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Two new algorithms

Advantages of the first algorithm:

e Faster than Brunotte's algorithm

e A “real” algorithm (terminates for all inputs)
Advantages of the second algorithm:

e Much faster than Brunotte's algorithm

e Very compact output (minimal list of cutout polyhedra)



Thank you for your attention!
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(P,N) is called a CNS, P a CNS polynomial and N the set of digits

if every non-zero element A(x) € R can be represented uniquely in the
form

A(X) = amx™ + am_1x™ 1+ +ax + ag
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Then P is a CNS polynomial <= (p—lo, pi’;‘,...,%7 B)e DE,O)






