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Definitions

Let d ∈ N and r = (r1, . . . , rd) ∈ Rd

τr : Zd 7→ Zd

x = (x1, . . . , xd) → (x2, . . . , xd ,−brxc)

is called the d - dimensional SRS associated with r (AKIYAMA et al.
2005)

where rx =
∑d

i=1 rixi denotes the scalar product of r and x
and byc the largest integer less than or equal to some real y . (floor)

Dd := {r ∈ Rd | each orbit of τr is ultimately periodic}
D(0)

d := {r ∈ Rd | each orbit of τr ends up in 0}

Elements of D(0)
d are said to have the finiteness property.

D(0)
d ⊆ Dd
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Definitions

Example:

d = 2
r = ( 9

10 ,
13
10 ) ∈ R2

τr((x1, x2)) = (x2,−brxc)

(0, 3) τr−→ (3,−3) τr−→ (−3, 2) τr−→ (2, 1) τr−→ (1,−3) τr−→ (−3, 3)
τr−→ (3,−1) τr−→ (−1,−1) τr−→ (−1, 3) τr−→ (3,−3) τr−→ (−3, 2)
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Motivation - Relation to β-Expansions

Let β > 1 be a non-integral, real number.

Then A := {0, 1, . . . , bβc} is called the set of digits,
as every γ ∈ [0,∞) can be represented uniquely in the form

γ = amβ
m + am−1β

m−1 + · · ·
(greedy expansion of γ with respect to β)

with m ∈ Z and ai ∈ A, such that

0 ≤ γ −
m∑

i=k

aiβ
i < βk

holds for all k ≤ m.
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Motivation - Relation to β-Expansions

Let Fin(β) be the set of all γ ∈ [0, 1) having finite greedy expansion with
respect to β.

Then Fin(β) ⊆ Z[ 1
β ] ∩ [0, 1)

If Fin(β) = Z[ 1
β ] ∩ [0, 1) then β is said to have property (F).

In that case β is an algebraic integer (furthermore a Pisot number) and
therefore has a minimal polynomial

X d + ad−1X d−1 + · · ·+ a1X + a0 ∈ Z[X ]

which can be written as

(X − β)(X d−1 + rd−2X d−2 + · · ·+ r1X + r0)

Then β has property (F) ⇐⇒ (r0, . . . , rd−2) ∈ D(0)
d−1 (AKIYAMA et al.

2005)
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Motivation - Relation to Canonical Number Systems

A similar relation can be shown for CNS:

Let P(X ) = X d + pd−1X d−1 + · · ·+ p1X + p0 ∈ Z[X ]

Then P is a CNS polynomial ⇐⇒ ( 1
p0
,

pd−1
p0

, . . . , p2
p0
, p1

p0
) ∈ D(0)

d
(AKIYAMA et al. 2005)
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Basic properties of SRS

For r = (r1, . . . , rd) ∈ Rd let

Rr :=


0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1
−r1 −r2 · · · · · · −rd


– the companion matrix of χr(X ) = X d + rdX d−1 + · · ·+ r2X + r1.

Then τr(x) = Rrx + vx where vx = (0, . . . , 0, {rx}).

Let ρ(M) denote the spectral radius of a matrix.
(i.e. the maximum absolute value of eigenvalues)

Then
• Dd ⊆ {r ∈ Rd | ρ(Rr) ≤ 1}
• {r ∈ Rd | ρ(Rr) < 1} ⊆ Dd
• ∂Dd = {r ∈ Rd | ρ(Rr) = 1}
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Characterization of D(0)
d – Two important concepts

Cutout polyhedra

For a tuple π of vectors in Zd let P(π) denote the set of all r ∈ Rd

for which π is a period of τr.

π = (x1, . . . , xn), τr(x1) = x2, . . . ,τr(xn) = x1

Then

P(π) is a (possibly degenerate) convex polyhedron characterized by a
finite set of linear inequalities

D(0)
d = Dd \

⋃
π 6=0

P(π) (BRUNOTTE 2001)
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Characterization of D(0)
d – Two important concepts

Sets of witnesses

A set V ⊆ Zd is called a set of witnesses for r ∈ Rd iff it is stable under
τr and τ?r := −τr ◦ (−idZd ) and contains a generating set of the group
(Zd ,+) which is closed under taking inverses.

Every such set of witnesses has the decisive property:

r ∈ D(0)
d ⇔ ∀ a ∈ V : ∃ n ∈ N : τn

r (a) = 0

Find a finite set of witnesses iteratively for r ∈ int (Dd):

V0 := {(±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)}
∀ n ∈ N : Vn := Vn−1 ∪ τr(Vn−1) ∪ τ?r (Vn−1)

Vr :=
⋃

n∈N0

Vn

(BRUNOTTE 2001)
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Each class is either contained in D(0)
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Advantages of the first algorithm:
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• A “real” algorithm (terminates for all inputs)

Advantages of the second algorithm:

• Much faster than Brunotte’s algorithm

• Very compact output (minimal list of cutout polyhedra)



Thank you for your attention!



Motivation - Relation to Canonical Number Systems

Let
P(X ) = X d + pd−1X d−1 + · · ·+ p1X + p0 ∈ Z[X ]
R := Z[X ]/P(X )Z[X ]
N := {0, 1, . . . , |p0| − 1}
x := X + P(X )Z[X ] ∈ R

(P,N ) is called a CNS, P a CNS polynomial and N the set of digits
if every non-zero element A(x) ∈ R can be represented uniquely in the
form

A(x) = amxm + am−1xm−1 + · · ·+ a1x + a0

with m ∈ N0, ai ∈ N and am 6= 0.

Then P is a CNS polynomial ⇐⇒ ( 1
p0
,

pd−1
p0

, . . . , p2
p0
, p1

p0
) ∈ D(0)

d
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