Shift Radix Systems - some new characterization results and topological properties

Mario Weitzer

Doctoral Program Discrete Mathematics

TU & KFU Graz · MU Leoben AUSTRIA

June 7, 2013

イロト 不得 トイヨト イヨト ヨー ろくぐ

Let $d \in \mathbb{N}$ and $\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let
$$d \in \mathbb{N}$$
 and $\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$

$$\tau_{\mathbf{r}}: \mathbb{Z}^d \mapsto \mathbb{Z}^d$$
$$\mathbf{x} = (x_1, \dots, x_d) \to (x_2, \dots, x_d, -\lfloor \mathbf{rx} \rfloor)$$

is called the d - dimensional SRS associated with \mathbf{r} (AKIYAMA et al. 2005)

where $\mathbf{rx} = \sum_{i=1}^{d} r_i x_i$ denotes the scalar product of \mathbf{r} and \mathbf{x} and $\lfloor y \rfloor$ the largest integer less than or equal to some real y. (floor)

Let
$$d \in \mathbb{N}$$
 and $\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$

$$\tau_{\mathbf{r}}: \mathbb{Z}^d \mapsto \mathbb{Z}^d$$
$$\mathbf{x} = (x_1, \dots, x_d) \to (x_2, \dots, x_d, -\lfloor \mathbf{rx} \rfloor)$$

is called the d - dimensional SRS associated with ${\bf r}$ (AKIYAMA et al. 2005)

where $\mathbf{rx} = \sum_{i=1}^{d} r_i x_i$ denotes the scalar product of \mathbf{r} and \mathbf{x} and $\lfloor y \rfloor$ the largest integer less than or equal to some real y. (floor)

 $\begin{aligned} \mathcal{D}_d &:= \{\mathbf{r} \in \mathbb{R}^d \mid \text{ each orbit of } \tau_{\mathbf{r}} \text{ is ultimately periodic} \} \\ \mathcal{D}_d^{(0)} &:= \{\mathbf{r} \in \mathbb{R}^d \mid \text{ each orbit of } \tau_{\mathbf{r}} \text{ ends up in } \mathbf{0} \} \end{aligned}$

Let
$$d \in \mathbb{N}$$
 and $\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$

$$\tau_{\mathbf{r}}: \mathbb{Z}^d \mapsto \mathbb{Z}^d$$
$$\mathbf{x} = (x_1, \dots, x_d) \to (x_2, \dots, x_d, -\lfloor \mathbf{rx} \rfloor)$$

is called the d - dimensional SRS associated with ${\bf r}$ (AKIYAMA et al. 2005)

where $\mathbf{rx} = \sum_{i=1}^{d} r_i x_i$ denotes the scalar product of \mathbf{r} and \mathbf{x} and $\lfloor y \rfloor$ the largest integer less than or equal to some real y. (floor)

 $\mathcal{D}_{d} := \{ \mathbf{r} \in \mathbb{R}^{d} \mid \text{ each orbit of } \tau_{\mathbf{r}} \text{ is ultimately periodic} \}$ $\mathcal{D}_{d}^{(0)} := \{ \mathbf{r} \in \mathbb{R}^{d} \mid \text{ each orbit of } \tau_{\mathbf{r}} \text{ ends up in } \mathbf{0} \}$

Elements of $\mathcal{D}_d^{(0)}$ are said to have the finiteness property.

Let
$$d \in \mathbb{N}$$
 and $\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$

$$\tau_{\mathbf{r}}: \mathbb{Z}^d \mapsto \mathbb{Z}^d$$
$$\mathbf{x} = (x_1, \dots, x_d) \to (x_2, \dots, x_d, -\lfloor \mathbf{rx} \rfloor)$$

is called the d - dimensional SRS associated with ${\bf r}$ (AKIYAMA et al. 2005)

where $\mathbf{rx} = \sum_{i=1}^{d} r_i x_i$ denotes the scalar product of \mathbf{r} and \mathbf{x} and $\lfloor y \rfloor$ the largest integer less than or equal to some real y. (floor)

 $\begin{aligned} \mathcal{D}_d &:= \{\mathbf{r} \in \mathbb{R}^d \mid \text{ each orbit of } \tau_{\mathbf{r}} \text{ is ultimately periodic} \} \\ \mathcal{D}_d^{(0)} &:= \{\mathbf{r} \in \mathbb{R}^d \mid \text{ each orbit of } \tau_{\mathbf{r}} \text{ ends up in } \mathbf{0} \} \end{aligned}$

Elements of $\mathcal{D}_d^{(0)}$ are said to have the finiteness property.

 $\mathcal{D}_d^{(0)} \subseteq \mathcal{D}_d$

Example:

d = 2 $\mathbf{r} = \left(\frac{9}{10}, \frac{13}{10}\right) \in \mathbb{R}^2$ $\tau_{\mathbf{r}}((x_1, x_2)) = (x_2, -\lfloor \mathbf{rx} \rfloor)$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Example:

d = 2 $\mathbf{r} = \left(\frac{9}{10}, \frac{13}{10}\right) \in \mathbb{R}^2$ $\tau_{\mathbf{r}}((x_1, x_2)) = (x_2, -\lfloor \mathbf{r} \mathbf{x} \rfloor)$ (0, 3)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Example:

d = 2 $\mathbf{r} = \left(\frac{9}{10}, \frac{13}{10}\right) \in \mathbb{R}^2$ $\tau_{\mathbf{r}}((x_1, x_2)) = (x_2, -\lfloor \mathbf{r} \mathbf{x} \rfloor)$ $(0, 3) \xrightarrow{\tau_{\mathbf{r}}} (3, -3)$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

Example:

d = 2 $\mathbf{r} = \left(\frac{9}{10}, \frac{13}{10}\right) \in \mathbb{R}^2$ $\tau_{\mathbf{r}}((x_1, x_2)) = (x_2, -\lfloor \mathbf{rx} \rfloor)$ $(0, 3) \xrightarrow{\tau_{\mathbf{r}}} (3, -3) \xrightarrow{\tau_{\mathbf{r}}} (-3, 2)$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

Example:

d = 2 $\mathbf{r} = \left(\frac{9}{10}, \frac{13}{10}\right) \in \mathbb{R}^{2}$ $\tau_{\mathbf{r}}((x_{1}, x_{2})) = (x_{2}, -\lfloor \mathbf{rx} \rfloor)$ $(0, 3) \xrightarrow{\tau_{\mathbf{r}}} (3, -3) \xrightarrow{\tau_{\mathbf{r}}} (-3, 2) \xrightarrow{\tau_{\mathbf{r}}} (2, 1)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Example:

d = 2 $\mathbf{r} = \left(\frac{9}{10}, \frac{13}{10}\right) \in \mathbb{R}^{2}$ $\tau_{\mathbf{r}}((x_{1}, x_{2})) = (x_{2}, -\lfloor \mathbf{rx} \rfloor)$ $(0, 3) \xrightarrow{\tau_{\mathbf{r}}} (3, -3) \xrightarrow{\tau_{\mathbf{r}}} (-3, 2) \xrightarrow{\tau_{\mathbf{r}}} (2, 1) \xrightarrow{\tau_{\mathbf{r}}} (1, -3)$

イロト 不良 マイボン イボン しょうくう

Example:

d = 2 $\mathbf{r} = \left(\frac{9}{10}, \frac{13}{10}\right) \in \mathbb{R}^{2}$ $\tau_{\mathbf{r}}((x_{1}, x_{2})) = (x_{2}, -\lfloor \mathbf{rx} \rfloor)$ $(0,3) \xrightarrow{\tau_{\mathbf{r}}} (3, -3) \xrightarrow{\tau_{\mathbf{r}}} (-3, 2) \xrightarrow{\tau_{\mathbf{r}}} (2, 1) \xrightarrow{\tau_{\mathbf{r}}} (1, -3) \xrightarrow{\tau_{\mathbf{r}}} (-3, 3)$

イロト 不良 マイボン イボン しょうくう

Example:

d = 2 $\mathbf{r} = \left(\frac{9}{10}, \frac{13}{10}\right) \in \mathbb{R}^{2}$ $\tau_{\mathbf{r}}((x_{1}, x_{2})) = (x_{2}, -\lfloor \mathbf{rx} \rfloor)$ $(0, 3) \xrightarrow{\tau_{\mathbf{r}}} (3, -3) \xrightarrow{\tau_{\mathbf{r}}} (-3, 2) \xrightarrow{\tau_{\mathbf{r}}} (2, 1) \xrightarrow{\tau_{\mathbf{r}}} (1, -3) \xrightarrow{\tau_{\mathbf{r}}} (-3, 3)$ $\xrightarrow{\tau_{\mathbf{r}}} (3, -1)$

イロト 不良 マイボン イボン しょうくう

Example:

d = 2 $\mathbf{r} = \left(\frac{9}{10}, \frac{13}{10}\right) \in \mathbb{R}^{2}$ $\tau_{\mathbf{r}}((x_{1}, x_{2})) = (x_{2}, -\lfloor \mathbf{rx} \rfloor)$ $\left(0, 3\right) \xrightarrow{\tau_{\mathbf{r}}} (3, -3) \xrightarrow{\tau_{\mathbf{r}}} (-3, 2) \xrightarrow{\tau_{\mathbf{r}}} (2, 1) \xrightarrow{\tau_{\mathbf{r}}} (1, -3) \xrightarrow{\tau_{\mathbf{r}}} (-3, 3)$ $\xrightarrow{\tau_{\mathbf{r}}} (3, -1) \xrightarrow{\tau_{\mathbf{r}}} (-1, -1)$

Example:

d = 2 $\mathbf{r} = \left(\frac{9}{10}, \frac{13}{10}\right) \in \mathbb{R}^2$ $\tau_{\mathbf{r}}((x_1, x_2)) = (x_2, -\lfloor \mathbf{rx} \rfloor)$

$$\begin{array}{c} (0,3) \xrightarrow{\tau_{\mathbf{r}}} (3,-3) \xrightarrow{\tau_{\mathbf{r}}} (-3,2) \xrightarrow{\tau_{\mathbf{r}}} (2,1) \xrightarrow{\tau_{\mathbf{r}}} (1,-3) \xrightarrow{\tau_{\mathbf{r}}} (-3,3) \\ \xrightarrow{\tau_{\mathbf{r}}} (3,-1) \xrightarrow{\tau_{\mathbf{r}}} (-1,-1) \xrightarrow{\tau_{\mathbf{r}}} (-1,3) \end{array}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

イロト 不良 マイボン イボン しょうくう

Example:

d = 2 $\mathbf{r} = \left(\frac{9}{10}, \frac{13}{10}\right) \in \mathbb{R}^2$ $\tau_{\mathbf{r}}((x_1, x_2)) = (x_2, -\lfloor \mathbf{rx} \rfloor)$

 $\begin{array}{c} (0,3) \xrightarrow{\tau_{\mathbf{r}}} (3,-3) \xrightarrow{\tau_{\mathbf{r}}} (-3,2) \xrightarrow{\tau_{\mathbf{r}}} (2,1) \xrightarrow{\tau_{\mathbf{r}}} (1,-3) \xrightarrow{\tau_{\mathbf{r}}} (-3,3) \\ \xrightarrow{\tau_{\mathbf{r}}} (3,-1) \xrightarrow{\tau_{\mathbf{r}}} (-1,-1) \xrightarrow{\tau_{\mathbf{r}}} (-1,3) \xrightarrow{\tau_{\mathbf{r}}} (3,-3) \end{array}$

イロト 不良 マイボン イボン しょうくう

Example:

d = 2 $\mathbf{r} = \left(\frac{9}{10}, \frac{13}{10}\right) \in \mathbb{R}^2$ $\tau_{\mathbf{r}}((x_1, x_2)) = (x_2, -\lfloor \mathbf{rx} \rfloor)$

 $\begin{array}{c} (0,3) \xrightarrow{\tau_{\mathbf{r}}} (3,-3) \xrightarrow{\tau_{\mathbf{r}}} (-3,2) \xrightarrow{\tau_{\mathbf{r}}} (2,1) \xrightarrow{\tau_{\mathbf{r}}} (1,-3) \xrightarrow{\tau_{\mathbf{r}}} (-3,3) \\ \xrightarrow{\tau_{\mathbf{r}}} (3,-1) \xrightarrow{\tau_{\mathbf{r}}} (-1,-1) \xrightarrow{\tau_{\mathbf{r}}} (-1,3) \xrightarrow{\tau_{\mathbf{r}}} (3,-3) \xrightarrow{\tau_{\mathbf{r}}} (-3,2) \end{array}$

ション ふゆ アメリア メリア しょうくの

Example:

d = 2 $\mathbf{r} = \left(\frac{9}{10}, \frac{13}{10}\right) \in \mathbb{R}^{2}$ $\tau_{\mathbf{r}}((x_{1}, x_{2})) = (x_{2}, -\lfloor \mathbf{rx} \rfloor)$ $\left(0, 3\right) \xrightarrow{\tau_{\mathbf{r}}} (3, -3) \xrightarrow{\tau_{\mathbf{r}}} (-3, 2) \xrightarrow{\tau_{\mathbf{r}}} (2, 1) \xrightarrow{\tau_{\mathbf{r}}} (1, -3) \xrightarrow{\tau_{\mathbf{r}}} (-3, 3)$ $\xrightarrow{\tau_{\mathbf{r}}} (3, -1) \xrightarrow{\tau_{\mathbf{r}}} (-1, -1) \xrightarrow{\tau_{\mathbf{r}}} (-1, 3) \xrightarrow{\tau_{\mathbf{r}}} (3, -3) \xrightarrow{\tau_{\mathbf{r}}} (-3, 2)$

 $\begin{array}{l} \mbox{Orbit of (0,3) ultimately periodic!} \\ \textbf{r} \in \mathcal{D}_2? \end{array}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Interested in $\mathcal{D}_d^{(0)}$

Why?

Relation between SRS and β -Expansions

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Interested in $\mathcal{D}_d^{(0)}$

Why?

Relation between SRS and β -Expansions

Relation between SRS and Canonical Number Systems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $\beta > 1$ be a non-integral, real number.

・ロト・日本・モート モー うへぐ

Let $\beta > 1$ be a non-integral, real number.

Then $\mathcal{A} := \{0, 1, \dots, \lfloor \beta \rfloor\}$ is called the set of digits,

Let $\beta > 1$ be a non-integral, real number.

Then $\mathcal{A} := \{0, 1, \dots, \lfloor \beta \rfloor\}$ is called the set of digits, as every $\gamma \in [0, \infty)$ can be represented uniquely in the form

 $\gamma = a_m \beta^m + a_{m-1} \beta^{m-1} + \cdots$ (greedy expansion of γ with respect to β)

with $m \in \mathbb{Z}$ and $a_i \in \mathcal{A}$, such that

$$0 \leq \gamma - \sum_{i=k}^{m} a_i \beta^i < \beta^k$$

holds for all $k \leq m$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $Fin(\beta)$ be the set of all $\gamma \in [0, 1)$ having finite greedy expansion with respect to β .

Let $Fin(\beta)$ be the set of all $\gamma \in [0, 1)$ having finite greedy expansion with respect to β .

Then $Fin(\beta) \subseteq \mathbb{Z}[\frac{1}{\beta}] \cap [0,1)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $Fin(\beta)$ be the set of all $\gamma \in [0, 1)$ having finite greedy expansion with respect to β .

Then $Fin(\beta) \subseteq \mathbb{Z}[\frac{1}{\beta}] \cap [0,1)$

If $Fin(\beta) = \mathbb{Z}[\frac{1}{\beta}] \cap [0, 1)$ then β is said to have property (F).

Let $Fin(\beta)$ be the set of all $\gamma \in [0, 1)$ having finite greedy expansion with respect to β .

Then $Fin(\beta) \subseteq \mathbb{Z}[\frac{1}{\beta}] \cap [0,1)$

If $Fin(\beta) = \mathbb{Z}[\frac{1}{\beta}] \cap [0, 1)$ then β is said to have property (F).

In that case β is an algebraic integer (furthermore a Pisot number) and therefore has a minimal polynomial

$$X^d + a_{d-1}X^{d-1} + \cdots + a_1X + a_0 \in \mathbb{Z}[X]$$

Let $Fin(\beta)$ be the set of all $\gamma \in [0, 1)$ having finite greedy expansion with respect to β .

Then $Fin(\beta) \subseteq \mathbb{Z}[\frac{1}{\beta}] \cap [0,1)$

If $Fin(\beta) = \mathbb{Z}[\frac{1}{\beta}] \cap [0, 1)$ then β is said to have property (F).

In that case β is an algebraic integer (furthermore a Pisot number) and therefore has a minimal polynomial

$$X^d + a_{d-1}X^{d-1} + \dots + a_1X + a_0 \in \mathbb{Z}[X]$$

which can be written as

$$(X - \beta)(X^{d-1} + r_{d-2}X^{d-2} + \cdots + r_1X + r_0)$$

Let $Fin(\beta)$ be the set of all $\gamma \in [0, 1)$ having finite greedy expansion with respect to β .

Then $Fin(\beta) \subseteq \mathbb{Z}[\frac{1}{\beta}] \cap [0,1)$

If $Fin(\beta) = \mathbb{Z}[\frac{1}{\beta}] \cap [0, 1)$ then β is said to have property (F).

In that case β is an algebraic integer (furthermore a Pisot number) and therefore has a minimal polynomial

$$X^d + a_{d-1}X^{d-1} + \dots + a_1X + a_0 \in \mathbb{Z}[X]$$

which can be written as

$$(X - \beta)(X^{d-1} + r_{d-2}X^{d-2} + \cdots + r_1X + r_0)$$

Then β has property (F) \iff $(r_0, \ldots, r_{d-2}) \in \mathcal{D}_{d-1}^{(0)}$ (AKIYAMA et al. 2005)

A similar relation can be shown for CNS:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A similar relation can be shown for CNS:

Let
$$P(X) = X^d + p_{d-1}X^{d-1} + \cdots + p_1X + p_0 \in \mathbb{Z}[X]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A similar relation can be shown for CNS:

Let
$$P(X) = X^d + p_{d-1}X^{d-1} + \dots + p_1X + p_0 \in \mathbb{Z}[X]$$

Then *P* is a CNS polynomial $\iff (\frac{1}{p_0}, \frac{p_{d-1}}{p_0}, \dots, \frac{p_2}{p_0}, \frac{p_1}{p_0}) \in \mathcal{D}_d^{(0)}$ (AKIYAMA et al. 2005)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

For
$$\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$$
 let

$$R_{\mathbf{r}} := \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -r_1 & -r_2 & \cdots & \cdots & -r_d \end{pmatrix}$$
= the companion matrix of $y_r(X) = X^d + r_d X^{d-1} + \cdots + r_2 X + r_1$

companion matrix of $\chi_r(\Lambda) = \Lambda^* + I_d \Lambda^*$ $+ \cdots$ $+ 12^{-1}$ 1 11.

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・ うへつ

For $\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$ let $R_{\mathbf{r}} := \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -r_1 & -r_2 & \cdots & \cdots & -r_d \end{pmatrix}$ - the companion matrix of $\chi_r(X) = X^d + r_d X^{d-1} + \cdots + r_2 X + r_1$.

Then $\tau_{\mathbf{r}}(\mathbf{x}) = R_{\mathbf{r}}\mathbf{x} + \mathbf{v}_{\mathbf{x}}$ where $\mathbf{v}_{\mathbf{x}} = (0, \dots, 0, \{\mathbf{rx}\})$.

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・ 臣 ・

For $\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$ let $R_{\mathbf{r}} := \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -r_1 & -r_2 & \cdots & \cdots & -r_d \end{pmatrix}$ - the companion matrix of $\chi_r(X) = X^d + r_d X^{d-1} + \cdots + r_2 X + r_1$.

Then $\tau_{\mathbf{r}}(\mathbf{x}) = R_{\mathbf{r}}\mathbf{x} + \mathbf{v}_{\mathbf{x}}$ where $\mathbf{v}_{\mathbf{x}} = (0, \dots, 0, \{\mathbf{rx}\}).$

Let $\rho(M)$ denote the spectral radius of a matrix. (i.e. the maximum absolute value of eigenvalues)

イロト 不得下 イヨト イヨト ヨー ろくで

For
$$\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$$
 let

$$R_{\mathbf{r}} := \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -r_1 & -r_2 & \cdots & \cdots & -r_d \end{pmatrix}$$
= the companion matrix of $\chi(X) = X^d + r_1 X^{d-1} + \dots + r_n X + r_n$

- the companion matrix of $\chi_r(X) = X^d + r_d X^{d-1} + \cdots + r_2 X + r_1$.

Then $\tau_{\mathbf{r}}(\mathbf{x}) = R_{\mathbf{r}}\mathbf{x} + \mathbf{v}_{\mathbf{x}}$ where $\mathbf{v}_{\mathbf{x}} = (0, \dots, 0, \{\mathbf{rx}\})$.

Let $\rho(M)$ denote the spectral radius of a matrix. (i.e. the maximum absolute value of eigenvalues)

Then

• $\mathcal{D}_d \subseteq \{\mathbf{r} \in \mathbb{R}^d \mid \rho(R_{\mathbf{r}}) \leq 1\}$

うして ふぼう ふほう ふほう しょう

For
$$\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$$
 let

$$R_{\mathbf{r}} := \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -r_1 & -r_2 & \cdots & \cdots & -r_d \end{pmatrix}$$
= the companion matrix of $\chi(X) = X^d + r_1 X^{d-1} + \dots + r_2 X + r_2$

- the companion matrix of $\chi_r(X) = X^d + r_d X^{d-1} + \cdots + r_2 X + r_1$.

Then $\tau_{\mathbf{r}}(\mathbf{x}) = R_{\mathbf{r}}\mathbf{x} + \mathbf{v}_{\mathbf{x}}$ where $\mathbf{v}_{\mathbf{x}} = (0, \dots, 0, \{\mathbf{rx}\})$.

Let $\rho(M)$ denote the spectral radius of a matrix. (i.e. the maximum absolute value of eigenvalues)

Then

- $\mathcal{D}_d \subseteq \{\mathbf{r} \in \mathbb{R}^d \mid \rho(R_{\mathbf{r}}) \leq 1\}$
- $\{\mathbf{r} \in \mathbb{R}^d \mid
 ho(R_{\mathbf{r}}) < 1\} \subseteq \mathcal{D}_d$

For
$$\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$$
 let

$$R_{\mathbf{r}} := \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -r_1 & -r_2 & \cdots & \cdots & -r_d \end{pmatrix}$$
= the companion matrix of $\chi(X) = X^d + r_1 X^{d-1} + \dots + r_n X + r_n$

- the companion matrix of $\chi_r(X) = X^d + r_d X^{d-1} + \cdots + r_2 X + r_1$.

Then $\tau_{\mathbf{r}}(\mathbf{x}) = R_{\mathbf{r}}\mathbf{x} + \mathbf{v}_{\mathbf{x}}$ where $\mathbf{v}_{\mathbf{x}} = (0, \dots, 0, \{\mathbf{rx}\})$.

Let $\rho(M)$ denote the spectral radius of a matrix. (i.e. the maximum absolute value of eigenvalues)

Then

•
$$\mathcal{D}_d \subseteq \{\mathbf{r} \in \mathbb{R}^d \mid \rho(R_{\mathbf{r}}) \leq 1\}$$

• {
$$\mathbf{r} \in \mathbb{R}^d \mid \rho(R_r) < 1$$
} $\subseteq \mathcal{D}_d$
• $\partial \mathcal{D}_d = {\mathbf{r} \in \mathbb{R}^d \mid \rho(R_r) = 1}$

Characterization of $\mathcal{D}_{d}^{(0)}$ – Two important concepts

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Cutout polyhedra

For a tuple π of vectors in \mathbb{Z}^d let $\mathcal{P}(\pi)$ denote the set of all $\mathbf{r} \in \mathbb{R}^d$ for which π is a period of $\tau_{\mathbf{r}}$.

$$\pi = (\mathbf{x}_1, \dots, \mathbf{x}_n), \ \tau_r(\mathbf{x}_1) = \mathbf{x}_2, \ \dots, \tau_r(\mathbf{x}_n) = \mathbf{x}_1$$

Characterization of $\mathcal{D}_{d}^{(0)}$ – Two important concepts

ション ふゆ アメリア メリア しょうくの

Cutout polyhedra

For a tuple π of vectors in \mathbb{Z}^d let $\mathcal{P}(\pi)$ denote the set of all $\mathbf{r} \in \mathbb{R}^d$ for which π is a period of $\tau_{\mathbf{r}}$.

$$\pi = (\mathbf{x}_1, \dots, \mathbf{x}_n)$$
, $\tau_r(\mathbf{x}_1) = \mathbf{x}_2$, \dots , $\tau_r(\mathbf{x}_n) = \mathbf{x}_1$

Then

 $\mathcal{P}(\pi)$ is a (possibly degenerate) convex polyhedron characterized by a finite set of linear inequalities

Characterization of $\mathcal{D}_{d}^{(0)}$ – Two important concepts

ション ふゆ アメリア メリア しょうくの

Cutout polyhedra

For a tuple π of vectors in \mathbb{Z}^d let $\mathcal{P}(\pi)$ denote the set of all $\mathbf{r} \in \mathbb{R}^d$ for which π is a period of $\tau_{\mathbf{r}}$.

$$\pi = (\mathbf{x}_1, \dots, \mathbf{x}_n), \ \tau_r(\mathbf{x}_1) = \mathbf{x}_2, \ \dots, \tau_r(\mathbf{x}_n) = \mathbf{x}_1$$

Then

 $\mathcal{P}(\pi)$ is a (possibly degenerate) convex polyhedron characterized by a finite set of linear inequalities

$$\mathcal{D}_d^{(0)} = \mathcal{D}_d \setminus \bigcup_{\pi \neq 0} \mathcal{P}(\pi)$$
 (BRUNOTTE 2001)

Characterization of $\mathcal{D}_d^{(0)}$ – Two important concepts

Sets of witnesses

A set $V \subseteq \mathbb{Z}^d$ is called a set of witnesses for $\mathbf{r} \in \mathbb{R}^d$ iff it is stable under $\tau_{\mathbf{r}}$ and $\tau_{\mathbf{r}}^* := -\tau_{\mathbf{r}} \circ (-\mathrm{id}_{\mathbb{Z}^d})$ and contains a generating set of the group $(\mathbb{Z}^d, +)$ which is closed under taking inverses.

Characterization of $\mathcal{D}_d^{(0)}$ – Two important concepts

Sets of witnesses

A set $V \subseteq \mathbb{Z}^d$ is called a set of witnesses for $\mathbf{r} \in \mathbb{R}^d$ iff it is stable under $\tau_{\mathbf{r}}$ and $\tau_{\mathbf{r}}^{\star} := -\tau_{\mathbf{r}} \circ (-\mathrm{id}_{\mathbb{Z}^d})$ and contains a generating set of the group $(\mathbb{Z}^d, +)$ which is closed under taking inverses.

Every such set of witnesses has the decisive property:

 $\mathbf{r} \in \mathcal{D}_d^{(0)} \Leftrightarrow \forall \, \mathbf{a} \in V : \exists \, n \in \mathbb{N} : \tau_{\mathbf{r}}^n(\mathbf{a}) = \mathbf{0}$

Characterization of $\mathcal{D}_d^{(0)}$ – Two important concepts

Sets of witnesses

A set $V \subseteq \mathbb{Z}^d$ is called a set of witnesses for $\mathbf{r} \in \mathbb{R}^d$ iff it is stable under $\tau_{\mathbf{r}}$ and $\tau_{\mathbf{r}}^{\star} := -\tau_{\mathbf{r}} \circ (-\mathrm{id}_{\mathbb{Z}^d})$ and contains a generating set of the group $(\mathbb{Z}^d, +)$ which is closed under taking inverses.

Every such set of witnesses has the decisive property:

$$\mathbf{r} \in \mathcal{D}_d^{(0)} \Leftrightarrow orall \mathbf{a} \in V : \exists n \in \mathbb{N} : \tau_{\mathbf{r}}^n(\mathbf{a}) = \mathbf{0}$$

Find a finite set of witnesses iteratively for $\mathbf{r} \in int(\mathcal{D}_d)$:

$$V_{0} := \{ (\pm 1, 0, \dots, 0), \dots, (0, \dots, 0, \pm 1) \}$$

$$\forall n \in \mathbb{N} : V_{n} := V_{n-1} \cup \tau_{r}(V_{n-1}) \cup \tau_{r}^{*}(V_{n-1})$$

$$V_{r} := \bigcup_{n \in \mathbb{N}_{0}} V_{n}$$

(BRUNOTTE 2001)

• $\mathcal{D}_1 = [-1, 1], \ \mathcal{D}_1^{(0)} = [0, 1)$

- $\mathcal{D}_1 = [-1, 1], \ \mathcal{D}_1^{(0)} = [0, 1)$
- $\mathcal{D}_2 \subseteq \{(x,y) \in \mathbb{R}^2 \mid x \ge |y| 1 \land x \le 1\}$
- Several regions of $\mathcal{D}_2^{(0)}$ have been characterized by AKIYAMA et al. in 2005

- $\mathcal{D}_1 = [-1, 1], \ \mathcal{D}_1^{(0)} = [0, 1)$
- $\mathcal{D}_2 \subseteq \{(x,y) \in \mathbb{R}^2 \mid x \ge |y| 1 \land x \le 1\}$
- Several regions of $\mathcal{D}_2^{(0)}$ have been characterized by AKIYAMA et al. in 2005
- Adaptation of the concept of sets of witnesses leads to an algorithm due to Brunotte

- $\mathcal{D}_1 = [-1, 1], \ \mathcal{D}_1^{(0)} = [0, 1)$
- $\mathcal{D}_2 \subseteq \{(x,y) \in \mathbb{R}^2 \mid x \ge |y| 1 \land x \le 1\}$
- Several regions of $\mathcal{D}_2^{(0)}$ have been characterized by AKIYAMA et al. in 2005
- Adaptation of the concept of sets of witnesses leads to an algorithm due to Brunotte

Applied by SURER 2008 to characterize $\mathcal{D}_2^{(0)} \cap \{(x, y) \in \mathbb{R}^2 \mid x \leq L\}$ where $L = \frac{99}{100}$

Theorem (M.W.):

- $\mathcal{D}_2^{(0)}$ has at least 22 connected components
- The largest connected component of $\mathcal{D}_2^{(0)}$ has at least 3 holes

Theorem (M.W.):

- $\mathcal{D}_2^{(0)}$ has at least 22 connected components
- The largest connected component of $\mathcal{D}_2^{(0)}$ has at least 3 holes

Result achieved by a new algorithm which has been used to characterize $\mathcal{D}_2^{(0)} \cap \{(x, y) \in \mathbb{R}^2 \mid x \leq L\}$ where $L = \frac{511}{512}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Basic concept:

Divide a given convex region inside the interior of $\mathcal{D}_{\textit{d}}$ into finitely many classes.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Basic concept:

Divide a given convex region inside the interior of $\mathcal{D}_{\textit{d}}$ into finitely many classes.

Each class is either contained in $\mathcal{D}_d^{(0)}$ or has empty intersection with it.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Basic concept:

Divide a given convex region inside the interior of \mathcal{D}_d into finitely many classes.

Each class is either contained in $\mathcal{D}_d^{(0)}$ or has empty intersection with it.

Handle classes in a sophisticated order to minimize computation time!

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Advantages of the first algorithm:

• Faster than Brunotte's algorithm

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Advantages of the first algorithm:

- Faster than Brunotte's algorithm
- A "real" algorithm (terminates for all inputs)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Advantages of the first algorithm:

- Faster than Brunotte's algorithm
- A "real" algorithm (terminates for all inputs)

Advantages of the second algorithm:

• Much faster than Brunotte's algorithm

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Advantages of the first algorithm:

- Faster than Brunotte's algorithm
- A "real" algorithm (terminates for all inputs)

Advantages of the second algorithm:

- Much faster than Brunotte's algorithm
- Very compact output (minimal list of cutout polyhedra)

Thank you for your attention!

(ロト (個) (E) (E) (E) (E) の(の)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Let

$$P(X) = X^{d} + p_{d-1}X^{d-1} + \dots + p_{1}X + p_{0} \in \mathbb{Z}[X]$$

 $\mathcal{R} := \mathbb{Z}[X]/P(X)\mathbb{Z}[X]$
 $\mathcal{N} := \{0, 1, \dots, |p_{0}| - 1\}$
 $x := X + P(X)\mathbb{Z}[X] \in \mathcal{R}$

ション ふゆ アメリア メリア しょうくの

Let

$$P(X) = X^{d} + p_{d-1}X^{d-1} + \dots + p_{1}X + p_{0} \in \mathbb{Z}[X]$$

$$\mathcal{R} := \mathbb{Z}[X]/P(X)\mathbb{Z}[X]$$

$$\mathcal{N} := \{0, 1, \dots, |p_{0}| - 1\}$$

$$x := X + P(X)\mathbb{Z}[X] \in \mathcal{R}$$

 (P, \mathcal{N}) is called a CNS, P a CNS polynomial and \mathcal{N} the set of digits if every non-zero element $A(x) \in \mathcal{R}$ can be represented uniquely in the form

 $A(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$

with $m \in \mathbb{N}_0$, $a_i \in \mathcal{N}$ and $a_m \neq 0$.

Let

$$P(X) = X^{d} + p_{d-1}X^{d-1} + \dots + p_{1}X + p_{0} \in \mathbb{Z}[X]$$

$$\mathcal{R} := \mathbb{Z}[X]/P(X)\mathbb{Z}[X]$$

$$\mathcal{N} := \{0, 1, \dots, |p_{0}| - 1\}$$

$$x := X + P(X)\mathbb{Z}[X] \in \mathcal{R}$$

 (P, \mathcal{N}) is called a CNS, P a CNS polynomial and \mathcal{N} the set of digits if every non-zero element $A(x) \in \mathcal{R}$ can be represented uniquely in the form

 $A(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$

with $m \in \mathbb{N}_0$, $a_i \in \mathcal{N}$ and $a_m \neq 0$.

Then P is a CNS polynomial $\iff (\frac{1}{p_0}, \frac{p_{d-1}}{p_0}, \dots, \frac{p_2}{p_0}, \frac{p_1}{p_0}) \in \mathcal{D}_d^{(0)}$

ション ふゆ アメリア メリア しょうくの