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Definitions

Let d ∈ N and r = (r1, . . . , rd) ∈ Rd

τr : Zd 7→ Zd

x = (x1, . . . , xd) → (x2, . . . , xd ,−brxc)

is called the d - dimensional SRS associated with r

where rx =
∑d

i=1 rixi denotes the scalar product of r and x
and byc the largest integer less than or equal to some real y . (floor)

Analogously for d ∈ N and r = (r1, . . . , rd) ∈ Cd

γr : Z[i]d 7→ Z[i]d
x = (x1, . . . , xd) → (x2, . . . , xd ,−brxc)

is called the d - dimensional GSRS associated with r

where byc := b<yc+ ib=yc for some complex y . (complex floor)
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Definitions

For d ∈ N

Dd := {r ∈ Rd | each orbit of τr is ultimately periodic}
D(0)

d := {r ∈ Rd | each orbit of τr ends up in 0}

Gd := {r ∈ Cd | each orbit of γr is ultimately periodic}
G(0)d := {r ∈ Cd | each orbit of γr ends up in 0}

Elements of D(0)
d and G(0)d are said to have the finiteness property.

D(0)
d ⊆ Dd

G(0)d ⊆ Gd
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Definitions

Example:

d = 1
r = 1

2 + 3
4 i ∈ C ' C1

2
γr−→ −1− i γr−→ 2i γr−→ 2− i γr−→ −1− i

Orbit of 2 ultimately periodic!
r ∈ G1?
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d and G(0)d
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Relation between SRS, β-Expansions and Canonical Number Systems



Motivation

Figure: D(0)
2 in D2 and G(0)

1 in G1

Interested in D(0)
d and G(0)d

Why?

Relation between SRS, β-Expansions and Canonical Number Systems



Motivation

Figure: D(0)
2 in D2 and G(0)

1 in G1

Interested in D(0)
d and G(0)d

Why?

Relation between SRS, β-Expansions and Canonical Number Systems



Motivation - Relation to β-Expansions

Let β > 1 be a non-integral, real number.

Then A := {0, 1, . . . , bβc} is called the set of digits,
as every γ ∈ [0,∞) can be represented uniquely in the form

γ = amβ
m + am−1β

m−1 + · · ·
(greedy expansion of γ with respect to β)

with m ∈ Z and ai ∈ A, such that

0 ≤ γ −
m∑
i=k

aiβ
i < βk

holds for all k ≤ m.
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Motivation - Relation to β-Expansions

Let Fin(β) be the set of all γ ∈ [0, 1) having finite greedy expansion with
respect to β.

Then Fin(β) ⊆ Z[ 1
β ] ∩ [0, 1)

If Fin(β) = Z[ 1
β ] ∩ [0, 1) then β is said to have property (F).

In that case β is an algebraic integer (furthermore a Pisot number) and
therefore has a minimal polynomial

X d + ad−1X
d−1 + · · ·+ a1X + a0 ∈ Z[X ]

which can be written as

(X − β)(X d−1 + rd−2X
d−2 + · · ·+ r1X + r0)

Then β has property (F) ⇐⇒ (r0, . . . , rd−2) ∈ D(0)
d−1
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Motivation - Relation to Canonical Number Systems

A similar relation can be shown for CNS:

Let P(X ) = X d + pd−1X
d−1 + · · ·+ p1X + p0 ∈ Z[X ]

Then P is a CNS polynomial ⇐⇒ ( 1
p0
, pd−1
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Basic properties of SRS and GSRS

For r = (r1, . . . , rd) ∈ Rd let

Rr :=


0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1
−r1 −r2 · · · · · · −rd



and ρ(M) denote the spectral radius of a matrix.
(i.e. the maximum absolute value of eigenvalues)

Then
• Dd ⊆ {r ∈ Rd | ρ(Rr) ≤ 1}
• {r ∈ Rd | ρ(Rr) < 1} ⊆ Dd ∩ {r ∈ Rd | τr has only f. m. periods}
• ∂Dd = {r ∈ Rd | ρ(Rr) = 1}

Equivalent statements are true for Gd .
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Basic properties of SRS and GSRS

For a tuple π of vectors in Zd let P(π) denote the set of all r ∈ Rd

for which π is a period of τr.

π = (x1, . . . , xn), τr(x1) = x2, . . . ,τr(xn) = x1

Then
• P(π) is a (possibly degenerate) convex polyhedron

• This polyhedron (including its boundary!) can always be
characterized by a finite set of integer linear inequalities

• In particular the polyhedron has only finitely many vertices
and these vertices have rational coordinates

• D(0)
d = Dd \

⋃
π 6=0

P(π)

Equivalent statements are true for Gd and G(0)d .
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The real case

Figure: D(0)
2 in D2 and G(0)

1 in G1

D1 = [−1, 1], D(0)
1 = [0, 1)

D2 ⊆ {(x , y) ∈ R2 | x ≥ |y | − 1 ∧ x ≤ 1}

D(0)
1 easy to characterize.
D(0)

2 hard to characterize and not completely settled up to now.

Hope that characterization of G(0)1 is of an intermediate level of difficulty.
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The real case

Figure: D2

Points on right line: ±1±
√

5
2 , ±

√
2, ±
√
3 (quadratic irrational numbers)



The complex case - Pethő’s Loudspeaker

{r ∈ C | |r | < 1} ⊆ G1 ⊆ {r ∈ C | |r | ≤ 1}

An easy argument for the first relation:

|γr (x)| < |r ||x |+
√
2 ⇒

⇒ If |r | < 1 then r ∈ G1

All cycles of r are contained in
{x ∈ Z[i] | |x | <

√
2

1−|r | +
√
2}
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The complex case - Pethő’s Loudspeaker

How to decide, whether a given r belongs to G(0)1 or not?

Direct or indirect argument possible!

Methods carry over to SRS and GSRS of arbitrary dimension.
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The complex case - Pethő’s Loudspeaker

Indirect argument:

Recapitulation:
r ∈ C
γr : Z[i] 7→ Z[i]

x → −brxc

n ∈ Z, x ∈ R
n = bxc ⇐⇒ 0 ≤ x − n < 1

x + iy ∈ C, a+ ib ∈ Z[i], A+ iB ∈ Z[i]
a+ ib

γx+iy−→ A+ iB ⇐⇒ 0 ≤ xa− yb + A < 1
0 ≤ xb + ya+ B < 1

Consider a tuple π of Gaussian integers and calculate the
"cut out polygon" P(π).

If π has n entries then P(π) is given by 4n integer linear inequalities
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The complex case - Pethő’s Loudspeaker

Example:

Let π = (1)

1
γx+iy−→ 1

0 ≤ xa− yb + A < 1
0 ≤ xb + ya+ B < 1

0 ≤ x + 1 < 1
0 ≤ y < 1

G(0)1 has empty intersection with the second quadrant.

As (x1, . . . , xn) is a cycle of r ⇐⇒ (ix1, . . . , ixn) is a cycle of r

G(0)1 is symmetric and therefore all of its elements have real parts ≥ 0.
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The complex case - Pethő’s Loudspeaker

Direct argument:

Theorem:
Let r ∈ C and Zr be the set of all elements of Z[i], whose orbits
end up in 0.

Suppose that there exists a subset V of Zr satisfying the following
properties:

{1,−1, i,−i} ⊆ V

∀x ∈ V : γr (x) ∈ V
−γr (−x) ∈ V

γr (x) ∈ V

−γr (−x) ∈ V

Then r ∈ G(0)1
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The complex case - Pethő’s Loudspeaker

Find V recursively: V1 := {1,−1, i,−i}
Vn := Vn−1 ∪ {Siγr (x) | x ∈ Vn−1 ∧ i ∈ {1, . . . , 4}}
V := ∪∞n=1Vn

S1f (x) = f (x)
S2f (x) = −f (−x)
S3f (x) = f (x)
S4f (x) = −f (−x)

Using the argument from before one gets:
If |r | < 1 then V ⊆ {x ∈ Z[i] | |x | <

√
2

1−|r | +
√
2}

Recursion terminates after finitely many steps.

Idea leads to an algorithm by Brunotte, which always calculates
G(0)1 ∩ conv(r1, . . . , rn) i.e. the intersection of G(0)1 with the convex hull of
finitely many interior points of G1 in finitely many steps.
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Example: V for r = 9
10 + i 6
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The complex case - Pethő’s Loudspeaker

For further considerations let V denote the set of the
4 · |V | arrows on V (images under S1f , . . . ,S4f ).
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Some observations and results

10 Points:

z1(n) = 1+ −2+in
n2−2 z6(n) = 1+ −1+i(n+1)

n2+n+1

z2(n) = 1+ −1+i(n−1)
n2−n−1 z7(n) = 1+ −1+i(n+1)

n2+n+2

z3(n) = 1+ −1+i(n−1)
n2−n z8(n) = 1+ −1+in

n2+2

z4(n) = 1+ −1+in
n2 z9(n) = 1+ −1+in

n2+3

z5(n) = 1+ −1+in
n2+1 z10(n) = 1+ −2+i(n+1)

n2+n+6



Some observations and results

Is G(0)1 star-shaped?
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Some observations and results

6 families of lines:

(0, 0) + t(p, 1)

( 1
2 , 0) + t(p, 2)

( 2
3 , 0) + t(p, 3)

(1, 0) + t(−2, p)

(2, 0) + t(p,−1)

(0, 1
p ) + t(1, 0)



Some observations and results

The corresponding polygons of which cycles "touch"

G(0)1 = G1 \
⋃
π 6=0

P(π)

?



Some observations and results

Cut outs: 4 families of cycles
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Some observations and results

Cut outs: 6 additional cycles
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Some observations and results

The 4 classes and 6 exceptions provide a
chain of polygons from i to 1.

Is the connected component left of the polygons "full"?

Are there any other connected components right of the polygons?

What qualifies the cycles of the 4 classes and 6 exceptions to be those
closest to G(0)1 ?

What is the "cycle structure" of G1?
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Some observations and results

A possible direct proof of the loudspeaker’s structure:

Calculating the polygon π(V) for a given V
(set of arrows on V).
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Some observations and results

If |r | < 1 then V ⊆ {x ∈ Z[i] | |x | <
√

2
1−|r | +

√
2}

Therefore every subset of the interior of the unit circle intersects with
only finitely many polygons π(V).

Provides a method to confirm the presumed structure of G(0)1
arbitrarily close to 1 in finitely many steps.

Perspectives:

"Automatic prover" searching for polygons.

More detailed images, understanding of the behavior close to 1,
recognition of possible self-similarities...
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Thank you for your attention!



Motivation - Relation to Canonical Number Systems

Let
P(X ) = X d + pd−1X

d−1 + · · ·+ p1X + p0 ∈ Z[X ]
R := Z[X ]/P(X )Z[X ]
N := {0, 1, . . . , |p0| − 1}
x := X + P(X )Z[X ] ∈ R

(P,N ) is called a CNS, P a CNS polynomial and N the set of digits
if every non-zero element A(x) ∈ R can be represented uniquely in the
form

A(x) = amx
m + am−1x

m−1 + · · ·+ a1x + a0

with m ∈ N0, ai ∈ N and am 6= 0.

Then P is a CNS polynomial ⇐⇒ ( 1
p0
, pd−1

p0
, . . . , p2

p0
, p1
p0
) ∈ D(0)

d
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