Gaussian Shift Radix Systems (GSRS) Pethő's Loudspeaker

Mario Weitzer

Montanuniversität Leoben

March 16, 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

イロト 不得 トイヨト イヨト ヨー ろくぐ

Generalized Radix Representations and Dynamical Systems I

S. AKIYAMA, T. BORBÉLY, H. BRUNOTTE, A. PETHŐ, J. M. THUSWALDNER

Acta Math. Hungar. 108 (3) (2005), 207-238.

Shift Radix Systems for Gaussian Integers and Pethő's Loudspeaker

H. BRUNOTTE, P. KIRSCHENHOFER, J. M. THUSWALDNER

> Publ. Math. Debrecen June 14, 2011. (to appear)

Let $d \in \mathbb{N}$ and $\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let
$$d \in \mathbb{N}$$
 and $\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$

$$\tau_{\mathbf{r}}: \mathbb{Z}^d \mapsto \mathbb{Z}^d$$
$$\mathbf{x} = (x_1, \dots, x_d) \to (x_2, \dots, x_d, -\lfloor \mathbf{rx} \rfloor)$$

is called the *d* - *dimensional* SRS associated with **r**

where $\mathbf{rx} = \sum_{i=1}^{d} r_i x_i$ denotes the scalar product of \mathbf{r} and \mathbf{x} and $\lfloor y \rfloor$ the largest integer less than or equal to some real y. (floor)

Let
$$d \in \mathbb{N}$$
 and $\mathbf{r} = (r_1, \ldots, r_d) \in \mathbb{R}^d$

$$au_{\mathbf{r}}: \mathbb{Z}^d \mapsto \mathbb{Z}^d$$

 $\mathbf{x} = (x_1, \dots, x_d) o (x_2, \dots, x_d, -\lfloor \mathbf{rx}
floor)$

is called the d - dimensional SRS associated with \mathbf{r}

where $\mathbf{rx} = \sum_{i=1}^{d} r_i x_i$ denotes the scalar product of \mathbf{r} and \mathbf{x} and $\lfloor y \rfloor$ the largest integer less than or equal to some real y. (floor)

Analogously for $d \in \mathbb{N}$ and $\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{C}^d$

$$\gamma_{\mathbf{r}}: \mathbb{Z}[\mathrm{i}]^d \mapsto \mathbb{Z}[\mathrm{i}]^d$$

 $\mathbf{x} = (x_1, \dots, x_d) o (x_2, \dots, x_d, -\lfloor \mathbf{rx} \rfloor)$

is called the d - dimensional GSRS associated with \mathbf{r}

where $\lfloor y \rfloor := \lfloor \Re y \rfloor + i \lfloor \Im y \rfloor$ for some complex y. (complex floor)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

For $d \in \mathbb{N}$

 $\mathcal{D}_{d} := \{ \mathbf{r} \in \mathbb{R}^{d} \mid \text{ each orbit of } \tau_{\mathbf{r}} \text{ is ultimately periodic} \}$ $\mathcal{D}_{d}^{(0)} := \{ \mathbf{r} \in \mathbb{R}^{d} \mid \text{ each orbit of } \tau_{\mathbf{r}} \text{ ends up in } \mathbf{0} \}$

ション ふゆ アメリア メリア しょうくの

For $d \in \mathbb{N}$

 $\mathcal{D}_{d} := \{ \mathbf{r} \in \mathbb{R}^{d} \mid \text{ each orbit of } \tau_{\mathbf{r}} \text{ is ultimately periodic} \}$ $\mathcal{D}_{d}^{(0)} := \{ \mathbf{r} \in \mathbb{R}^{d} \mid \text{ each orbit of } \tau_{\mathbf{r}} \text{ ends up in } \mathbf{0} \}$

 $\begin{array}{l} \mathcal{G}_d & := \{\mathbf{r} \in \mathbb{C}^d \mid \text{ each orbit of } \gamma_{\mathbf{r}} \text{ is ultimately periodic} \} \\ \mathcal{G}_d^{(0)} & := \{\mathbf{r} \in \mathbb{C}^d \mid \text{ each orbit of } \gamma_{\mathbf{r}} \text{ ends up in } \mathbf{0} \} \end{array}$

For $d \in \mathbb{N}$

 $\mathcal{D}_{d} := \{ \mathbf{r} \in \mathbb{R}^{d} \mid \text{ each orbit of } \tau_{\mathbf{r}} \text{ is ultimately periodic} \}$ $\mathcal{D}_{d}^{(0)} := \{ \mathbf{r} \in \mathbb{R}^{d} \mid \text{ each orbit of } \tau_{\mathbf{r}} \text{ ends up in } \mathbf{0} \}$

 $\begin{array}{l} \mathcal{G}_d & := \{\mathbf{r} \in \mathbb{C}^d \mid \text{ each orbit of } \gamma_{\mathbf{r}} \text{ is ultimately periodic} \} \\ \mathcal{G}_d^{(0)} & := \{\mathbf{r} \in \mathbb{C}^d \mid \text{ each orbit of } \gamma_{\mathbf{r}} \text{ ends up in } \mathbf{0} \} \end{array}$

Elements of $\mathcal{D}_d^{(0)}$ and $\mathcal{G}_d^{(0)}$ are said to have the finiteness property.

For $d \in \mathbb{N}$

 $\mathcal{D}_{d} := \{ \mathbf{r} \in \mathbb{R}^{d} \mid \text{ each orbit of } \tau_{\mathbf{r}} \text{ is ultimately periodic} \}$ $\mathcal{D}_{d}^{(0)} := \{ \mathbf{r} \in \mathbb{R}^{d} \mid \text{ each orbit of } \tau_{\mathbf{r}} \text{ ends up in } \mathbf{0} \}$

 $\begin{array}{ll} \mathcal{G}_d & := \{\mathbf{r} \in \mathbb{C}^d \mid \text{ each orbit of } \gamma_{\mathbf{r}} \text{ is ultimately periodic} \} \\ \mathcal{G}_d^{(0)} & := \{\mathbf{r} \in \mathbb{C}^d \mid \text{ each orbit of } \gamma_{\mathbf{r}} \text{ ends up in } \mathbf{0} \} \end{array}$

Elements of $\mathcal{D}_d^{(0)}$ and $\mathcal{G}_d^{(0)}$ are said to have the finiteness property.

 $\mathcal{D}_d^{(0)} \subseteq \mathcal{D}_d$ $\mathcal{G}_d^{(0)} \subseteq \mathcal{G}_d$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Example:

$$\begin{array}{l} d=1\\ r=\frac{1}{2}+\frac{3}{4}\mathrm{i}\in\mathbb{C}\simeq\mathbb{C}^1 \end{array}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Example:

$$\begin{array}{l} d=1\\ r=\frac{1}{2}+\frac{3}{4}\mathrm{i}\in\mathbb{C}\simeq\mathbb{C}^1 \end{array}$$

2

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Example:

d = 1 $r = \frac{1}{2} + \frac{3}{4}i \in \mathbb{C} \simeq \mathbb{C}^1$

 $2 \xrightarrow{\gamma_r} -1 -i$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Example:

- d = 1 $r = \frac{1}{2} + \frac{3}{4}i \in \mathbb{C} \simeq \mathbb{C}^1$
- $2 \xrightarrow{\gamma_r} -1 i \xrightarrow{\gamma_r} 2i$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Example:

 $\begin{aligned} d &= 1\\ r &= \frac{1}{2} + \frac{3}{4}i \in \mathbb{C} \simeq \mathbb{C}^{1}\\ 2 &\xrightarrow{\gamma_{r}} -1 - i \xrightarrow{\gamma_{r}} 2i \xrightarrow{\gamma_{r}} 2 - i \end{aligned}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Example:

 $\begin{aligned} d &= 1\\ r &= \frac{1}{2} + \frac{3}{4}i \in \mathbb{C} \simeq \mathbb{C}^{1}\\ 2 &\xrightarrow{\gamma_{r}} -1 - i \xrightarrow{\gamma_{r}} 2i \xrightarrow{\gamma_{r}} 2 - i \xrightarrow{\gamma_{r}} -1 - i \end{aligned}$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Example:

$$d = 1$$

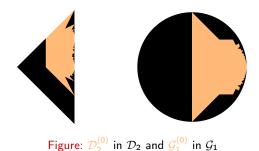
$$r = \frac{1}{2} + \frac{3}{4}i \in \mathbb{C} \simeq \mathbb{C}^{1}$$

$$2 \xrightarrow{\gamma_{r}} -1 - i \xrightarrow{\gamma_{r}} 2i \xrightarrow{\gamma_{r}} 2 - i \xrightarrow{\gamma_{r}} -1 - i$$

Orbit of 2 ultimately periodic! $r \in \mathcal{G}_1$?

Motivation

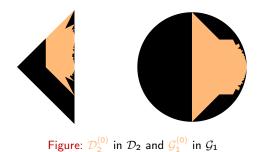
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��



Interested in $\mathcal{D}_d^{(0)}$ and $\mathcal{G}_d^{(0)}$

Motivation

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��



Interested in $\mathcal{D}_{d}^{(0)}$ and $\mathcal{G}_{d}^{(0)}$ Why?

Motivation

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

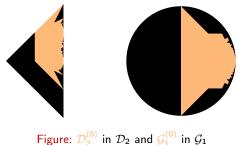


Figure. \mathcal{D}_2 in \mathcal{D}_2 and \mathcal{G}_1 in

Interested in $\mathcal{D}_{d}^{(0)}$ and $\mathcal{G}_{d}^{(0)}$ Why?

Relation between SRS, β -Expansions and Canonical Number Systems

Let $\beta > 1$ be a non-integral, real number.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\beta > 1$ be a non-integral, real number.

Then $\mathcal{A} := \{0, 1, \dots, \lfloor \beta \rfloor\}$ is called the set of digits,

Let $\beta > 1$ be a non-integral, real number.

Then $\mathcal{A} := \{0, 1, \dots, \lfloor \beta \rfloor\}$ is called the set of digits, as every $\gamma \in [0, \infty)$ can be represented uniquely in the form

 $\gamma = a_m \beta^m + a_{m-1} \beta^{m-1} + \cdots$ (greedy expansion of γ with respect to β)

with $m \in \mathbb{Z}$ and $a_i \in \mathcal{A}$, such that

$$0 \leq \gamma - \sum_{i=k}^{m} a_i \beta^i < \beta^k$$

holds for all $k \leq m$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○回 ● ● ●

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $Fin(\beta)$ be the set of all $\gamma \in [0, 1)$ having finite greedy expansion with respect to β .

Let $Fin(\beta)$ be the set of all $\gamma \in [0, 1)$ having finite greedy expansion with respect to β .

Then $Fin(\beta) \subseteq \mathbb{Z}[\frac{1}{\beta}] \cap [0,1)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $Fin(\beta)$ be the set of all $\gamma \in [0, 1)$ having finite greedy expansion with respect to β .

Then $Fin(\beta) \subseteq \mathbb{Z}[\frac{1}{\beta}] \cap [0,1)$

If $Fin(\beta) = \mathbb{Z}[\frac{1}{\beta}] \cap [0,1)$ then β is said to have property (F).

Let $Fin(\beta)$ be the set of all $\gamma \in [0, 1)$ having finite greedy expansion with respect to β .

Then $Fin(\beta) \subseteq \mathbb{Z}[\frac{1}{\beta}] \cap [0,1)$

If $Fin(\beta) = \mathbb{Z}[\frac{1}{\beta}] \cap [0, 1)$ then β is said to have property (F).

In that case β is an algebraic integer (furthermore a Pisot number) and therefore has a minimal polynomial

$$X^d + a_{d-1}X^{d-1} + \cdots + a_1X + a_0 \in \mathbb{Z}[X]$$

ション ふゆ アメリア メリア しょうくの

Let $Fin(\beta)$ be the set of all $\gamma \in [0, 1)$ having finite greedy expansion with respect to β .

Then $Fin(\beta) \subseteq \mathbb{Z}[\frac{1}{\beta}] \cap [0,1)$

If $Fin(\beta) = \mathbb{Z}[\frac{1}{\beta}] \cap [0,1)$ then β is said to have property (F).

In that case β is an algebraic integer (furthermore a Pisot number) and therefore has a minimal polynomial

$$X^d + a_{d-1}X^{d-1} + \cdots + a_1X + a_0 \in \mathbb{Z}[X]$$

which can be written as

$$(X - \beta)(X^{d-1} + r_{d-2}X^{d-2} + \cdots + r_1X + r_0)$$

Let $Fin(\beta)$ be the set of all $\gamma \in [0, 1)$ having finite greedy expansion with respect to β .

Then $Fin(\beta) \subseteq \mathbb{Z}[\frac{1}{\beta}] \cap [0,1)$

If $Fin(\beta) = \mathbb{Z}[\frac{1}{\beta}] \cap [0, 1)$ then β is said to have property (F).

In that case β is an algebraic integer (furthermore a Pisot number) and therefore has a minimal polynomial

$$X^d + a_{d-1}X^{d-1} + \cdots + a_1X + a_0 \in \mathbb{Z}[X]$$

which can be written as

$$(X - \beta)(X^{d-1} + r_{d-2}X^{d-2} + \cdots + r_1X + r_0)$$

Then β has property (F) $\iff (r_0, \ldots, r_{d-2}) \in \mathcal{D}_{d-1}^{(0)}$

Motivation - Relation to Canonical Number Systems

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A similar relation can be shown for CNS:

Motivation - Relation to Canonical Number Systems

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A similar relation can be shown for CNS:

Let
$$P(X) = X^d + p_{d-1}X^{d-1} + \dots + p_1X + p_0 \in \mathbb{Z}[X]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A similar relation can be shown for CNS:

Let
$$P(X) = X^d + p_{d-1}X^{d-1} + \dots + p_1X + p_0 \in \mathbb{Z}[X]$$

Then P is a CNS polynomial $\iff (\frac{1}{p_0}, \frac{p_{d-1}}{p_0}, \dots, \frac{p_2}{p_0}, \frac{p_1}{p_0}) \in \mathcal{D}_d^{(0)}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

For
$$\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$$
 let

$$R_{\mathbf{r}} := \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -r_1 & -r_2 & \cdots & \cdots & -r_d \end{pmatrix}$$

イロト 不得 トイヨト イヨト ヨー ろくで

For $\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$ let $R_{\mathbf{r}} := \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -r_1 & -r_2 & \cdots & \cdots & -r_d \end{pmatrix}$

and $\rho(M)$ denote the spectral radius of a matrix. (i.e. the maximum absolute value of eigenvalues)

イロト 不得 トイヨト イヨト ヨー うらつ

For $\mathbf{r} = (r_1, \dots, r_d) \in \mathbb{R}^d$ let $R_{\mathbf{r}} := \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -r_1 & -r_2 & \cdots & \cdots & -r_d \end{pmatrix}$

and $\rho(M)$ denote the spectral radius of a matrix. (i.e. the maximum absolute value of eigenvalues)

Then

• $\mathcal{D}_d \subseteq \{\mathbf{r} \in \mathbb{R}^d \mid \rho(R_{\mathbf{r}}) \leq 1\}$

イロト 不得 トイヨト イヨト ヨー ろくで

For $\mathbf{r} = (r_1, \ldots, r_d) \in \mathbb{R}^d$ let $R_{\mathbf{r}} := \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -r_1 & -r_2 & \cdots & \cdots & -r_d \end{pmatrix}$

and $\rho(M)$ denote the spectral radius of a matrix. (i.e. the maximum absolute value of eigenvalues)

Then

• $\mathcal{D}_d \subseteq \{\mathbf{r} \in \mathbb{R}^d \mid \rho(R_{\mathbf{r}}) \leq 1\}$ • $\{\mathbf{r} \in \mathbb{R}^d \mid \rho(R_{\mathbf{r}}) < 1\} \subseteq \mathcal{D}_d \cap \{\mathbf{r} \in \mathbb{R}^d \mid \tau_{\mathbf{r}} \text{ has only f. m. periods}\}$

For $\mathbf{r} = (r_1, \ldots, r_d) \in \mathbb{R}^d$ let $R_{\mathbf{r}} := \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -r_1 & -r_2 & \cdots & \cdots & -r_d \end{pmatrix}$

and $\rho(M)$ denote the spectral radius of a matrix. (i.e. the maximum absolute value of eigenvalues)

Then

- $\mathcal{D}_d \subseteq \{\mathbf{r} \in \mathbb{R}^d \mid \rho(R_{\mathbf{r}}) \le 1\}$ $\{\mathbf{r} \in \mathbb{R}^d \mid \rho(R_{\mathbf{r}}) < 1\} \subseteq \mathcal{D}_d \cap \{\mathbf{r} \in \mathbb{R}^d \mid \tau_{\mathbf{r}} \text{ has only f. m. periods}\}$
- $\partial \mathcal{D}_d = \{\mathbf{r} \in \mathbb{R}^d \mid \rho(R_r) = 1\}$

For $\mathbf{r} = (r_1, \ldots, r_d) \in \mathbb{R}^d$ let $R_{\mathbf{r}} := \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -r_1 & -r_2 & \cdots & \cdots & -r_d \end{pmatrix}$

and $\rho(M)$ denote the spectral radius of a matrix. (i.e. the maximum absolute value of eigenvalues)

Then

- $\mathcal{D}_d \subseteq \{\mathbf{r} \in \mathbb{R}^d \mid \rho(R_{\mathbf{r}}) \leq 1\}$ $\{\mathbf{r} \in \mathbb{R}^d \mid \rho(R_{\mathbf{r}}) < 1\} \subseteq \mathcal{D}_d \cap \{\mathbf{r} \in \mathbb{R}^d \mid \tau_{\mathbf{r}} \text{ has only f. m. periods}\}$
- $\partial \mathcal{D}_d = \{\mathbf{r} \in \mathbb{R}^d \mid \rho(R_r) = 1\}$

Equivalent statements are true for \mathcal{G}_d .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For a tuple π of vectors in \mathbb{Z}^d let $\mathcal{P}(\pi)$ denote the set of all $\mathbf{r} \in \mathbb{R}^d$ for which π is a period of $\tau_{\mathbf{r}}$.

$$\pi = (\mathbf{x}_1, \dots, \mathbf{x}_n), \ \tau_r(\mathbf{x}_1) = \mathbf{x}_2, \ \dots, \tau_r(\mathbf{x}_n) = \mathbf{x}_1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For a tuple π of vectors in \mathbb{Z}^d let $\mathcal{P}(\pi)$ denote the set of all $\mathbf{r} \in \mathbb{R}^d$ for which π is a period of $\tau_{\mathbf{r}}$.

$$\pi = (\mathbf{x_1}, \dots, \mathbf{x_n}), \ \tau_r(\mathbf{x_1}) = \mathbf{x_2}, \ \dots, \tau_r(\mathbf{x_n}) = \mathbf{x_1}$$

Then

• $\mathcal{P}(\pi)$ is a (possibly degenerate) convex polyhedron

ション ふゆ アメリア メリア しょうくの

For a tuple π of vectors in \mathbb{Z}^d let $\mathcal{P}(\pi)$ denote the set of all $\mathbf{r} \in \mathbb{R}^d$ for which π is a period of $\tau_{\mathbf{r}}$.

$$\pi = (\mathbf{x_1}, \dots, \mathbf{x_n}), \ \tau_r(\mathbf{x_1}) = \mathbf{x_2}, \ \dots, \tau_r(\mathbf{x_n}) = \mathbf{x_1}$$

Then

- $\mathcal{P}(\pi)$ is a (possibly degenerate) convex polyhedron
- This polyhedron (including its boundary!) can always be characterized by a finite set of integer linear inequalities

ション ふゆ アメリア メリア しょうくの

For a tuple π of vectors in \mathbb{Z}^d let $\mathcal{P}(\pi)$ denote the set of all $\mathbf{r} \in \mathbb{R}^d$ for which π is a period of $\tau_{\mathbf{r}}$.

$$\pi = (\mathbf{x_1}, \dots, \mathbf{x_n}), \ \tau_r(\mathbf{x_1}) = \mathbf{x_2}, \ \dots, \tau_r(\mathbf{x_n}) = \mathbf{x_1}$$

Then

- $\mathcal{P}(\pi)$ is a (possibly degenerate) convex polyhedron
- This polyhedron (including its boundary!) can always be characterized by a finite set of integer linear inequalities
- In particular the polyhedron has only finitely many vertices and these vertices have rational coordinates

うして ふぼう ふほう ふほう しょう

For a tuple π of vectors in \mathbb{Z}^d let $\mathcal{P}(\pi)$ denote the set of all $\mathbf{r} \in \mathbb{R}^d$ for which π is a period of $\tau_{\mathbf{r}}$.

$$\pi = (\mathbf{x_1}, \dots, \mathbf{x_n}), \ \tau_r(\mathbf{x_1}) = \mathbf{x_2}, \ \dots, \tau_r(\mathbf{x_n}) = \mathbf{x_1}$$

Then

- $\mathcal{P}(\pi)$ is a (possibly degenerate) convex polyhedron
- This polyhedron (including its boundary!) can always be characterized by a finite set of integer linear inequalities
- In particular the polyhedron has only finitely many vertices and these vertices have rational coordinates
- $\mathcal{D}_d^{(0)} = \mathcal{D}_d \setminus \bigcup_{\pi \neq 0} \mathcal{P}(\pi)$

For a tuple π of vectors in \mathbb{Z}^d let $\mathcal{P}(\pi)$ denote the set of all $\mathbf{r} \in \mathbb{R}^d$ for which π is a period of $\tau_{\mathbf{r}}$.

$$\pi = (\mathbf{x_1}, \dots, \mathbf{x_n}), \ \tau_r(\mathbf{x_1}) = \mathbf{x_2}, \ \dots, \tau_r(\mathbf{x_n}) = \mathbf{x_1}$$

Then

- $\mathcal{P}(\pi)$ is a (possibly degenerate) convex polyhedron
- This polyhedron (including its boundary!) can always be characterized by a finite set of integer linear inequalities
- In particular the polyhedron has only finitely many vertices and these vertices have rational coordinates
- $\mathcal{D}_d^{(0)} = \mathcal{D}_d \setminus \bigcup_{\pi \neq 0} \mathcal{P}(\pi)$

Equivalent statements are true for \mathcal{G}_d and $\mathcal{G}_d^{(0)}$.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

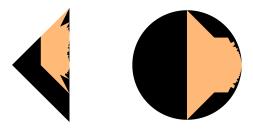


Figure: $\mathcal{D}_2^{(0)}$ in \mathcal{D}_2 and $\mathcal{G}_1^{(0)}$ in \mathcal{G}_1

 $\begin{array}{l} \mathcal{D}_1 = [-1,1], \ \mathcal{D}_1^{(0)} = [0,1) \\ \mathcal{D}_2 \subseteq \{(x,y) \in \mathbb{R}^2 \mid x \geq |y| - 1 \land x \leq 1\} \end{array}$

ション ふゆ アメリア メリア しょうくの

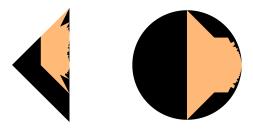


Figure: $\mathcal{D}_2^{(0)}$ in \mathcal{D}_2 and $\mathcal{G}_1^{(0)}$ in \mathcal{G}_1

 $\begin{array}{l} \mathcal{D}_1 = [-1,1], \ \mathcal{D}_1^{(0)} = [0,1) \\ \mathcal{D}_2 \subseteq \{(x,y) \in \mathbb{R}^2 \mid x \geq |y| - 1 \wedge x \leq 1\} \end{array}$

 $\mathcal{D}_1^{(0)}$ easy to characterize. $\mathcal{D}_2^{(0)}$ hard to characterize and not completely settled up to now.

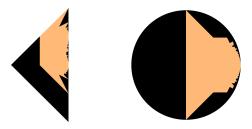


Figure: $\mathcal{D}_2^{(0)}$ in \mathcal{D}_2 and $\mathcal{G}_1^{(0)}$ in \mathcal{G}_1

 $\begin{array}{l} \mathcal{D}_1 = [-1,1], \ \mathcal{D}_1^{(0)} = [0,1) \\ \mathcal{D}_2 \subseteq \{(x,y) \in \mathbb{R}^2 \mid x \geq |y| - 1 \wedge x \leq 1\} \end{array}$

 $\mathcal{D}_1^{(0)}$ easy to characterize. $\mathcal{D}_2^{(0)}$ hard to characterize and not completely settled up to now.

Hope that characterization of $\mathcal{G}_1^{(0)}$ is of an intermediate level of difficulty.

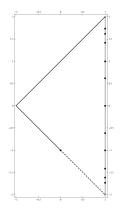


Figure: \mathcal{D}_2

Points on right line: $\frac{\pm 1 \pm \sqrt{5}}{2}$, $\pm \sqrt{2}$, $\pm \sqrt{3}$ (quadratic irrational numbers)

$\{r \in \mathbb{C} \mid |r| < 1\} \subseteq \mathcal{G}_1 \subseteq \{r \in \mathbb{C} \mid |r| \le 1\}$

| ◆ □ ▶ → @ ▶ → 差 ▶ → 差 → のへぐ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

$\{r \in \mathbb{C} \mid |r| < 1\} \subseteq \mathcal{G}_1 \subseteq \{r \in \mathbb{C} \mid |r| \le 1\}$

An easy argument for the first relation:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

$\{r \in \mathbb{C} \mid |r| < 1\} \subseteq \mathcal{G}_1 \subseteq \{r \in \mathbb{C} \mid |r| \le 1\}$

An easy argument for the first relation:

 $|\gamma_r(x)| < |r||x| + \sqrt{2}$

ション ふゆ アメリア メリア しょうくの

$\{r \in \mathbb{C} \mid |r| < 1\} \subseteq \mathcal{G}_1 \subseteq \{r \in \mathbb{C} \mid |r| \le 1\}$

An easy argument for the first relation:

$$|\gamma_r(x)| < |r||x| + \sqrt{2} \Rightarrow$$

 \Rightarrow If |r| < 1 then $r \in \mathcal{G}_1$

All cycles of r are contained in $\{x \in \mathbb{Z}[i] \mid |x| < \frac{\sqrt{2}}{1-|r|} + \sqrt{2}\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

How to decide, whether a given r belongs to $\mathcal{G}_1^{(0)}$ or not?

How to decide, whether a given r belongs to $\mathcal{G}_1^{(0)}$ or not?

Direct or indirect argument possible!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

How to decide, whether a given r belongs to $\mathcal{G}_1^{(0)}$ or not?

Direct or indirect argument possible!

Methods carry over to SRS and GSRS of arbitrary dimension.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Indirect argument:

Recapitulation: $r \in \mathbb{C}$ $\gamma_r : \mathbb{Z}[i] \mapsto \mathbb{Z}[i]$ $x \to -\lfloor rx \rfloor$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Indirect argument:

Recapitulation: $r \in \mathbb{C}$ $\gamma_r : \mathbb{Z}[i] \mapsto \mathbb{Z}[i]$ $x \to -\lfloor rx \rfloor$

$$n \in \mathbb{Z}, x \in \mathbb{R}$$

 $n = \lfloor x \rfloor \iff 0 \le x - n < 1$

Indirect argument:

Recapitulation: $r \in \mathbb{C}$ $\gamma_r : \mathbb{Z}[i] \mapsto \mathbb{Z}[i]$ $x \to -\lfloor rx \rfloor$ $n \in \mathbb{Z}, x \in \mathbb{R}$ $n = \lfloor x \rfloor \iff 0 \le x - n < 1$ $x + iy \in \mathbb{C}, a + ib \in \mathbb{Z}[i], A + iB \in \mathbb{Z}[i]$ $a + ib \xrightarrow{\gamma_{x+iy}} A + iB \iff 0 \le xa - yb + A < 1$ $0 \le xb + ya + B \le 1$

イロト 不得 トイヨト イヨト ヨー ろくで

Indirect argument:

Recapitulation: $r \in \mathbb{C}$ $\gamma_r : \mathbb{Z}[i] \mapsto \mathbb{Z}[i]$ $x \to -\lfloor rx \rfloor$ $n \in \mathbb{Z}, x \in \mathbb{R}$ $n = \lfloor x \rfloor \iff 0 \le x - n < 1$ $x + iy \in \mathbb{C}, a + ib \in \mathbb{Z}[i], A + iB \in \mathbb{Z}[i]$ $a + ib \xrightarrow{\gamma_{x+iy}} A + iB \iff 0 \le xa - yb + A < 1$ $0 \le xb + ya + B < 1$

Consider a tuple π of Gaussian integers and calculate the "cut out polygon" $\mathcal{P}(\pi)$.

イロト 不得 トイヨト イヨト ヨー ろくで

Indirect argument:

Recapitulation: $r \in \mathbb{C}$ $\gamma_r : \mathbb{Z}[\mathbf{i}] \mapsto \mathbb{Z}[\mathbf{i}]$ $x \to -\lfloor rx \rfloor$ $n \in \mathbb{Z}, x \in \mathbb{R}$ $n = \lfloor x \rfloor \iff 0 \le x - n < 1$ $x + \mathbf{i}y \in \mathbb{C}, a + \mathbf{i}b \in \mathbb{Z}[\mathbf{i}], A + \mathbf{i}B \in \mathbb{Z}[\mathbf{i}]$ $a + \mathbf{i}b \xrightarrow{\gamma_{x+\mathbf{i}y}} A + \mathbf{i}B \iff 0 \le xa - yb + A < 1$ $0 \le xb + ya + B < 1$

Consider a tuple π of Gaussian integers and calculate the "cut out polygon" $\mathcal{P}(\pi)$.

If π has *n* entries then $\mathcal{P}(\pi)$ is given by 4n integer linear inequalities

Example:

Let $\pi = (1)$

Example:

Let $\pi = (1)$

 $1 \stackrel{\gamma_{x+\mathrm{i}y}}{\longrightarrow} 1$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Example:

Let $\pi = (1)$

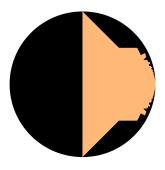
 $1 \stackrel{\gamma_{x+\mathrm{i}y}}{\longrightarrow} 1$

 $0 \le xa - yb + A < 1$ $0 \le xb + ya + B < 1$

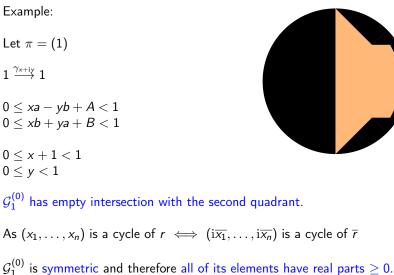
 $\begin{array}{l} 0 \leq x+1 < 1 \\ 0 \leq y < 1 \end{array}$

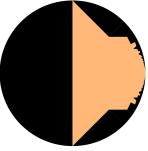
Example: Let $\pi = (1)$ $1 \xrightarrow{\gamma_{x+iy}} 1$ 0 < xa - yb + A < 10 < xb + ya + B < 10 < x + 1 < 1 $0 \leq y < 1$

 $\mathcal{G}_1^{(0)}$ has empty intersection with the second quadrant.



◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@





イロト 不得 トイヨト イヨト ヨー ろくぐ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Direct argument:

Theorem: Let $r \in \mathbb{C}$ and \mathcal{Z}_r be the set of all elements of $\mathbb{Z}[i]$, whose orbits end up in 0.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Direct argument:

Theorem: Let $r \in \mathbb{C}$ and \mathcal{Z}_r be the set of all elements of $\mathbb{Z}[i]$, whose orbits end up in 0.

Suppose that there exists a subset V of Z_r satisfying the following properties:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Direct argument:

Theorem: Let $r \in \mathbb{C}$ and \mathcal{Z}_r be the set of all elements of $\mathbb{Z}[i]$, whose orbits end up in 0.

Suppose that there exists a subset V of Z_r satisfying the following properties:

 $\{1,-1,i,-i\}\subseteq \textit{V}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Direct argument:

Theorem:

Let $r \in \mathbb{C}$ and \mathcal{Z}_r be the set of all elements of $\mathbb{Z}[i]$, whose orbits end up in 0.

Suppose that there exists a subset V of Z_r satisfying the following properties:

 $\{1, -1, \mathbf{i}, -\mathbf{i}\} \subseteq V$ $\forall x \in V : \quad \gamma_r(x) \in V \\ -\gamma_r(-x) \in V \\ \frac{\gamma_r(\overline{x})}{\gamma_r(-\overline{x})} \in V \\ -\overline{\gamma_r(-\overline{x})} \in V$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Direct argument:

Theorem:

Let $r \in \mathbb{C}$ and \mathcal{Z}_r be the set of all elements of $\mathbb{Z}[i]$, whose orbits end up in 0.

Suppose that there exists a subset V of Z_r satisfying the following properties:

 $\{1, -1, \mathbf{i}, -\mathbf{i}\} \subseteq V$ $\forall x \in V : \quad \gamma_r(x) \in V \\ -\gamma_r(-x) \in V \\ \frac{\gamma_r(\overline{x})}{\gamma_r(-\overline{x})} \in V \\ -\overline{\gamma_r(-\overline{x})} \in V$

Then $r \in \mathcal{G}_1^{(0)}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

Find V recursively:
$$V_1 := \{1, -1, i, -i\}$$
$$V_n := V_{n-1} \cup \{S_i \gamma_r(x) \mid x \in V_{n-1} \land i \in \{1, \dots, 4\}\}$$
$$V := \bigcup_{n=1}^{\infty} V_n$$

$$S_1 f(x) = f(x)$$

$$S_2 f(x) = -f(-x)$$

$$S_3 f(x) = \overline{f(\overline{x})}$$

$$S_4 f(x) = -f(-\overline{x})$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Find V recursively:
$$V_1 := \{1, -1, i, -i\}$$
$$V_n := V_{n-1} \cup \{S_i \gamma_r(x) \mid x \in V_{n-1} \land i \in \{1, \dots, 4\}\}$$
$$V := \bigcup_{n=1}^{\infty} V_n$$

$$S_1 f(x) = f(x)$$

$$S_2 f(x) = -f(-x)$$

$$S_3 f(x) = \overline{f(\overline{x})}$$

$$S_4 f(x) = -\overline{f(-\overline{x})}$$

Using the argument from before one gets: If |r| < 1 then $V \subseteq \{x \in \mathbb{Z}[i] \mid |x| < \frac{\sqrt{2}}{1-|r|} + \sqrt{2}\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Find V recursively:
$$V_1 := \{1, -1, i, -i\}$$
$$V_n := V_{n-1} \cup \{S_i \gamma_r(x) \mid x \in V_{n-1} \land i \in \{1, \dots, 4\}\}$$
$$V := \bigcup_{n=1}^{\infty} V_n$$

$$S_1 f(x) = f(x)$$

$$S_2 f(x) = -f(-x)$$

$$S_3 f(x) = \overline{f(\overline{x})}$$

$$S_4 f(x) = -\overline{f(-\overline{x})}$$

Using the argument from before one gets: If |r| < 1 then $V \subseteq \{x \in \mathbb{Z}[i] \mid |x| < \frac{\sqrt{2}}{1-|r|} + \sqrt{2}\}$

Recursion terminates after finitely many steps.

Find V recursively:
$$V_1 := \{1, -1, i, -i\}$$
$$V_n := V_{n-1} \cup \{S_i \gamma_r(x) \mid x \in V_{n-1} \land i \in \{1, \dots, 4\}\}$$
$$V := \bigcup_{n=1}^{\infty} V_n$$

$$S_1 f(x) = f(x)$$

$$S_2 f(x) = -f(-x)$$

$$S_3 f(x) = \overline{f(\overline{x})}$$

$$S_4 f(x) = -\overline{f(-\overline{x})}$$

Using the argument from before one gets: If |r| < 1 then $V \subseteq \{x \in \mathbb{Z}[i] \mid |x| < \frac{\sqrt{2}}{1-|r|} + \sqrt{2}\}$

Recursion terminates after finitely many steps.

Idea leads to an algorithm by Brunotte, which always calculates $\mathcal{G}_1^{(0)} \cap conv(r_1, \ldots, r_n)$ i.e. the intersection of $\mathcal{G}_1^{(0)}$ with the convex hull of finitely many interior points of \mathcal{G}_1 in finitely many steps.

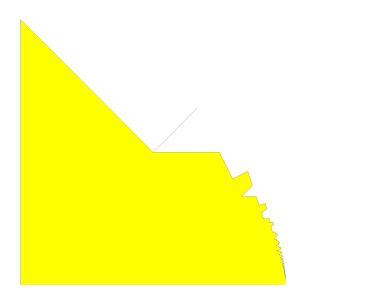
Example: *V* for $r = \frac{9}{10} + i\frac{6}{17}$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

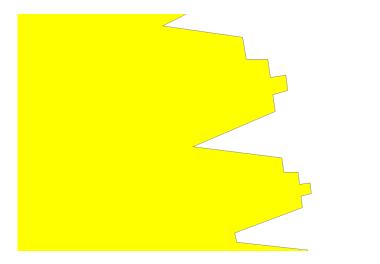
Example: *V* for $r = \frac{9}{10} + i\frac{6}{17}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For further considerations let \mathcal{V} denote the set of the $4 \cdot |V|$ arrows on V (images under $S_1 f, \ldots, S_4 f$).

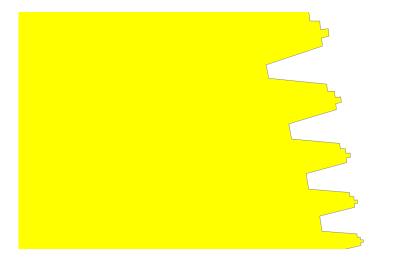


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

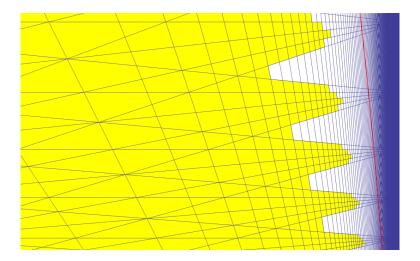
10 Points:

 $z_1(n) = 1 + \frac{-2 + in}{n^2 - 2}$ $z_2(n) = 1 + \frac{-1 + i(n - 1)}{n^2 - n - 1}$ $z_3(n) = 1 + \frac{-1 + i(n - 1)}{n^2 - n}$ $z_4(n) = 1 + \frac{-1 + in}{n^2}$ $z_5(n) = 1 + \frac{-1 + in}{n^2 + 1}$

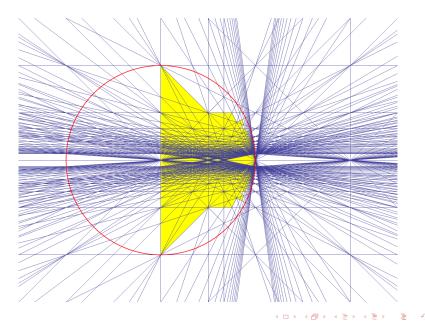
 $\begin{aligned} z_6(n) &= 1 + \frac{-1 + i(n+1)}{n^2 + n + 1} \\ z_7(n) &= 1 + \frac{-1 + i(n+1)}{n^2 + n + 2} \\ z_8(n) &= 1 + \frac{-1 + in}{n^2 + 2} \\ z_9(n) &= 1 + \frac{-1 + in}{n^2 + 3} \\ z_{10}(n) &= 1 + \frac{-2 + i(n+1)}{n^2 + n + 6} \end{aligned}$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Is $\mathcal{G}_1^{(0)}$ star-shaped?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで



) 2 (~

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

6 families of lines:

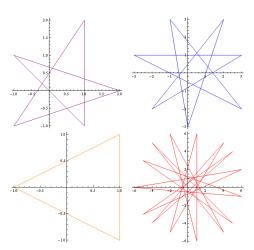
(0,0) + t(p,1) $(\frac{1}{2},0)+t(p,2)$ $(\frac{2}{3},0) + t(p,3)$ (1,0) + t(-2,p)(2,0) + t(p,-1) $(0,\frac{1}{p})+t(1,0)$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The corresponding polygons of which cycles "touch"

$$\mathcal{G}_1^{(0)} = \mathcal{G}_1 \setminus igcup_{\pi
eq 0} \mathcal{P}(\pi)$$

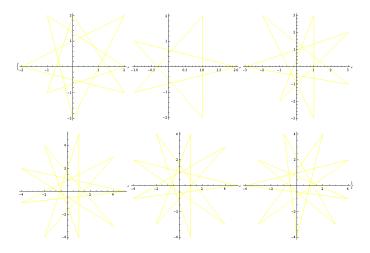
?



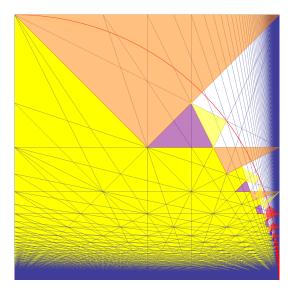
Cut outs: 4 families of cycles

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

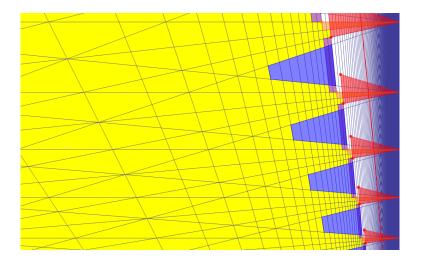
Cut outs: 4 families of cycles



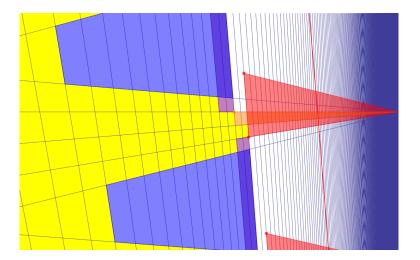
▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで



◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで



▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

The 4 classes and 6 exceptions provide a chain of polygons from i to 1.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

The 4 classes and 6 exceptions provide a chain of polygons from i to 1.

Is the connected component left of the polygons "full"?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

The 4 classes and 6 exceptions provide a chain of polygons from i to 1.

Is the connected component left of the polygons "full"?

Are there any other connected components right of the polygons?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

The 4 classes and 6 exceptions provide a chain of polygons from i to 1.

Is the connected component left of the polygons "full"?

Are there any other connected components right of the polygons?

What qualifies the cycles of the 4 classes and 6 exceptions to be those closest to $\mathcal{G}_1^{(0)}?$

ション ふゆ アメリア メリア しょうくの

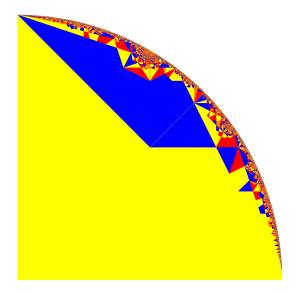
The 4 classes and 6 exceptions provide a chain of polygons from i to 1.

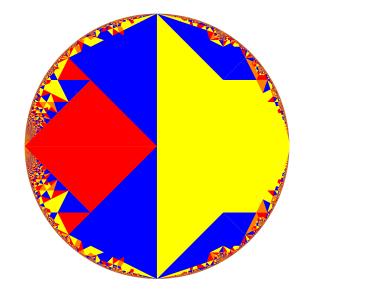
Is the connected component left of the polygons "full"?

Are there any other connected components right of the polygons?

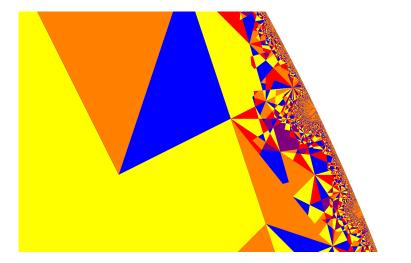
What qualifies the cycles of the 4 classes and 6 exceptions to be those closest to $\mathcal{G}_1^{(0)}?$

What is the "cycle structure" of \mathcal{G}_1 ?

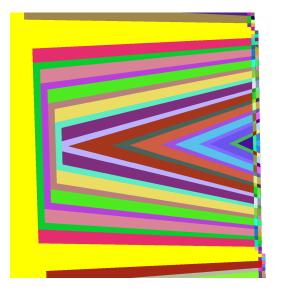




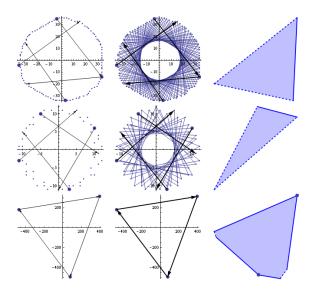
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



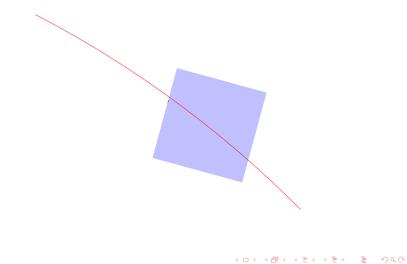
▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで



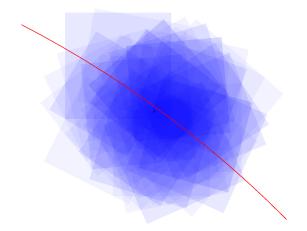
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 - のへで



◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ○臣 - のへの



< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ぐ</p>

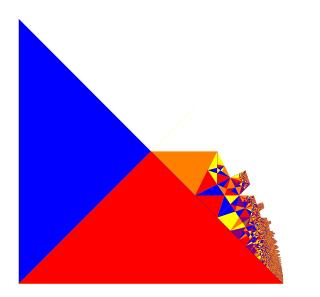


▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

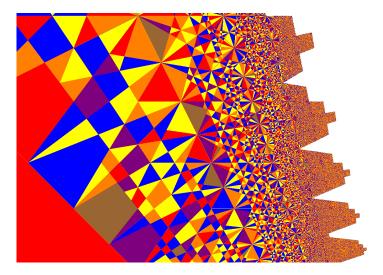
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A possible direct proof of the loudspeaker's structure:

Calculating the polygon $\pi(\mathcal{V})$ for a given \mathcal{V} (set of arrows on V).



▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで



◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

(ロ)、(型)、(E)、(E)、(E)、(D)、(O)

If |r| < 1 then $V \subseteq \{x \in \mathbb{Z}[i] \mid |x| < \frac{\sqrt{2}}{1-|r|} + \sqrt{2}\}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

If
$$|r| < 1$$
 then $V \subseteq \{x \in \mathbb{Z}[i] \mid |x| < rac{\sqrt{2}}{1-|r|} + \sqrt{2}\}$

Therefore every subset of the interior of the unit circle intersects with only finitely many polygons $\pi(\mathcal{V})$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

If
$$|r| < 1$$
 then $V \subseteq \{x \in \mathbb{Z}[i] \mid |x| < rac{\sqrt{2}}{1 - |r|} + \sqrt{2}\}$

Therefore every subset of the interior of the unit circle intersects with only finitely many polygons $\pi(\mathcal{V})$.

Provides a method to confirm the presumed structure of $\mathcal{G}_1^{(0)}$ arbitrarily close to 1 in finitely many steps.

ション ふゆ アメリア メリア しょうくの

If
$$|r| < 1$$
 then $V \subseteq \{x \in \mathbb{Z}[\mathrm{i}] \mid |x| < rac{\sqrt{2}}{1-|r|} + \sqrt{2}\}$

Therefore every subset of the interior of the unit circle intersects with only finitely many polygons $\pi(\mathcal{V})$.

Provides a method to confirm the presumed structure of $\mathcal{G}_1^{(0)}$ arbitrarily close to 1 in finitely many steps.

Perspectives:

"Automatic prover" searching for polygons.

ション ふゆ アメリア メリア しょうくの

If
$$|r| < 1$$
 then $V \subseteq \{x \in \mathbb{Z}[i] \mid |x| < rac{\sqrt{2}}{1 - |r|} + \sqrt{2}\}$

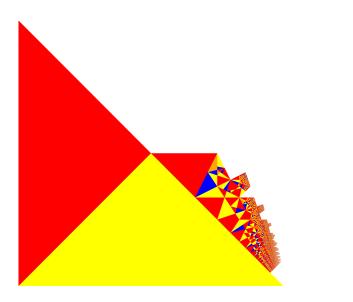
Therefore every subset of the interior of the unit circle intersects with only finitely many polygons $\pi(\mathcal{V})$.

Provides a method to confirm the presumed structure of $\mathcal{G}_1^{(0)}$ arbitrarily close to 1 in finitely many steps.

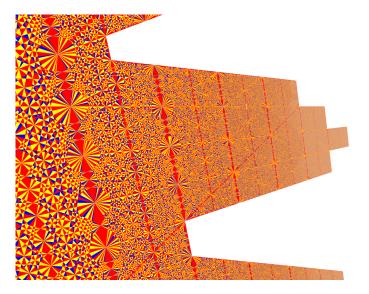
Perspectives:

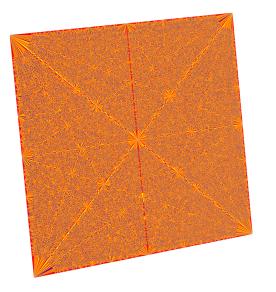
"Automatic prover" searching for polygons.

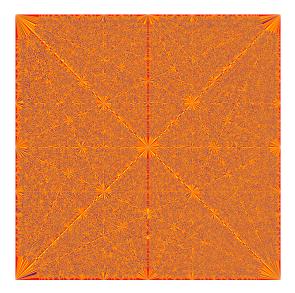
More detailed images, understanding of the behavior close to 1, recognition of possible self-similarities...



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで





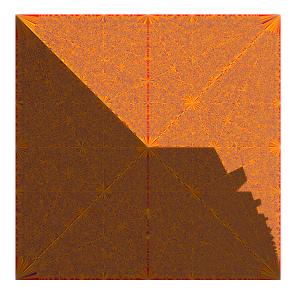


◆ロト ◆聞 ト ◆臣 ト ◆臣 ト ○臣 ○ のへで

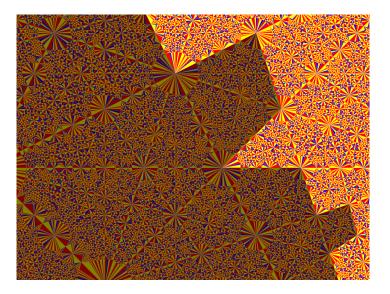


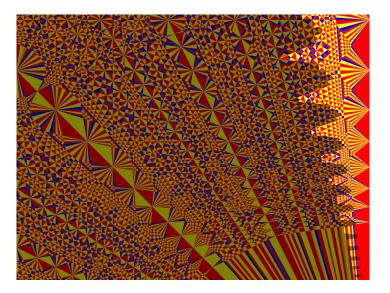
・ロト ・ 通 ト ・ 注 ト ・ 注 ・ の へ ()・

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ぐ</p>



▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト 一 臣 … の Q ()・





Thank you for your attention!

(ロト (個) (E) (E) (E) (E) の(の)

Motivation - Relation to Canonical Number Systems

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Let

$$P(X) = X^d + p_{d-1}X^{d-1} + \dots + p_1X + p_0 \in \mathbb{Z}[X]$$

 $\mathcal{R} := \mathbb{Z}[X]/P(X)\mathbb{Z}[X]$
 $\mathcal{N} := \{0, 1, \dots, |p_0| - 1\}$
 $x := X + P(X)\mathbb{Z}[X] \in \mathcal{R}$

Motivation - Relation to Canonical Number Systems

ション ふゆ アメリア メリア しょうくの

Let

$$P(X) = X^{d} + p_{d-1}X^{d-1} + \dots + p_{1}X + p_{0} \in \mathbb{Z}[X]$$

$$\mathcal{R} := \mathbb{Z}[X]/P(X)\mathbb{Z}[X]$$

$$\mathcal{N} := \{0, 1, \dots, |p_{0}| - 1\}$$

$$x := X + P(X)\mathbb{Z}[X] \in \mathcal{R}$$

 (P, \mathcal{N}) is called a CNS, P a CNS polynomial and \mathcal{N} the set of digits if every non-zero element $A(x) \in \mathcal{R}$ can be represented uniquely in the form

 $A(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$

with $m \in \mathbb{N}_0$, $a_i \in \mathcal{N}$ and $a_m \neq 0$.

Motivation - Relation to Canonical Number Systems

Let

$$P(X) = X^{d} + p_{d-1}X^{d-1} + \dots + p_{1}X + p_{0} \in \mathbb{Z}[X]$$

$$\mathcal{R} := \mathbb{Z}[X]/P(X)\mathbb{Z}[X]$$

$$\mathcal{N} := \{0, 1, \dots, |p_{0}| - 1\}$$

$$x := X + P(X)\mathbb{Z}[X] \in \mathcal{R}$$

 (P, \mathcal{N}) is called a CNS, P a CNS polynomial and \mathcal{N} the set of digits if every non-zero element $A(x) \in \mathcal{R}$ can be represented uniquely in the form

 $A(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$

with $m \in \mathbb{N}_0$, $a_i \in \mathcal{N}$ and $a_m \neq 0$.

Then P is a CNS polynomial $\iff (\frac{1}{p_0}, \frac{p_{d-1}}{p_0}, \dots, \frac{p_2}{p_0}, \frac{p_1}{p_0}) \in \mathcal{D}_d^{(0)}$

ション ふゆ アメリア メリア しょうくの