# Constrained Triangulations, Volumes of Polytopes, and Unit Equations

Mario Weitzer

(joint work with Michael Kerber and Robert Tichy)

Graz University of Technology, Austria

33rd International Symposium on Computational Geometry (SoCG 2017), Brisbane, July 5

## Number theoretic motivation: an arithmetic constant

Let  $u_{\mathcal{K},S}(n;q)$ : Number of representations of algebraic integers  $\alpha$ with  $|N_{\mathcal{K}/\mathbb{Q}}(\alpha)| \leq q$  that can be written as sums of exactly *n S*-units

## Number theoretic motivation: an arithmetic constant

Let  $u_{K,S}(n;q)$ : Number of representations of algebraic integers  $\alpha$ with  $|N_{K/\mathbb{Q}}(\alpha)| \leq q$  that can be written as sums of exactly *n S*-units

**Theorem** (Fuchs, Tichy, Ziegler 2009)

$$u_{K,S}(n;q) = \frac{c_{n-1,s}}{n!} \left(\frac{\omega_K \log(q)^s}{\operatorname{Reg}_{K,S}}\right)^{n-1} + o(\log(q)^{(n-1)s-1+\varepsilon}) \quad (q \to \infty)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - わへぐ

 $c_{n,s}$  is the volume of

$$P_{n,s} := \{ (x_{1,1}, \ldots, x_{n,s}) \in \mathbb{R}^{ns} \mid g_{n,s}(x_{1,1}, \ldots, x_{n,s}) \leq 1 \}$$

 $c_{n,s}$  is the volume of

$$P_{n,s} := \{ (x_{1,1}, \ldots, x_{n,s}) \in \mathbb{R}^{ns} \mid g_{n,s}(x_{1,1}, \ldots, x_{n,s}) \leq 1 \}$$

where

$$g_{n,s}\begin{pmatrix}x_{1,1}&\ldots&x_{1,s}\\\vdots&&\vdots\\x_{n,1}&\ldots&x_{n,s}\end{pmatrix} := \max\begin{cases}0\\x_{1,1}\\\vdots\\x_{n,1}\end{pmatrix} + \cdots + \max\begin{cases}0\\x_{1,s}\\\vdots\\x_{n,s}\end{pmatrix} + \max\begin{cases}0\\x_{1,s}\\\vdots\\x_{n,s}\end{pmatrix} + \max\begin{cases}0\\x_{1,s}\\\vdots\\x_{n,s}\end{pmatrix}$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Note: We identify  $\mathbb{R}^{ns}$  and  $\mathbb{R}^{n \times s}$ 

$$g_{n,s}\begin{pmatrix} x_{1,1} & \dots & x_{1,s} \\ \vdots & & \vdots \\ x_{n,1} & \dots & x_{n,s} \end{pmatrix} := \max \begin{cases} 0 \\ x_{1,1} \\ \vdots \\ x_{n,1} \end{pmatrix} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} +$$
$$\max \begin{cases} -x_{1,1} - \dots - x_{1,s} \\ \vdots \\ -x_{n,1} - \dots - x_{n,s} \end{cases}$$
$$P_{n,s} := \{(x_{1,1}, \dots, x_{n,s}) \in \mathbb{R}^{ns} \mid g_{n,s}(x_{1,1}, \dots, x_{n,s}) \leq 1\}$$

$$g_{n,s}\begin{pmatrix} x_{1,1} & \dots & x_{1,s} \\ \vdots & & \vdots \\ x_{n,1} & \dots & x_{n,s} \end{pmatrix} := \max \begin{cases} 0 \\ x_{1,1} \\ \vdots \\ x_{n,1} \end{pmatrix} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} +$$
$$\max \begin{cases} 0 \\ -x_{1,1} - \dots - x_{1,s} \\ \vdots \\ -x_{n,1} - \dots - x_{n,s} \end{cases}$$
$$P_{n,s} := \{(x_{1,1}, \dots, x_{n,s}) \in \mathbb{R}^{ns} \mid g_{n,s}(x_{1,1}, \dots, x_{n,s}) \leq 1\}$$

We call  $P_{n,s}$  the (n,s)-Everest polytope in honor of G. R. Everest

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$g_{n,s}\begin{pmatrix} x_{1,1} & \dots & x_{1,s} \\ \vdots & & \vdots \\ x_{n,1} & \dots & x_{n,s} \end{pmatrix} := \max \begin{cases} 0 \\ x_{1,1} \\ \vdots \\ x_{n,1} \end{pmatrix} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{pmatrix} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ x_{1,s} \\ x_{n,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ x_{1,s} \\ x_{1,s} \\ x_{1,s} \\ x_{1,s} \end{cases} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\$$

We call  $P_{n,s}$  the (n, s)-Everest polytope in honor of G. R. Everest  $P_{n,s}$  is a • closed non-degenerate convex polytope

$$g_{n,s}\begin{pmatrix} x_{1,1} & \dots & x_{1,s} \\ \vdots & & \vdots \\ x_{n,1} & \dots & x_{n,s} \end{pmatrix} := \max \begin{cases} 0 \\ x_{1,1} \\ \vdots \\ x_{n,1} \end{pmatrix} + \dots + \max \begin{cases} 0 \\ x_{1,s} \\ \vdots \\ x_{n,s} \end{cases} +$$
$$\max \begin{cases} 0 \\ -x_{1,1} - \dots - x_{1,s} \\ \vdots \\ -x_{n,1} - \dots - x_{n,s} \end{cases}$$
$$P_{n,s} := \{(x_{1,1}, \dots, x_{n,s}) \in \mathbb{R}^{ns} \mid g_{n,s}(x_{1,1}, \dots, x_{n,s}) \leq 1\}$$

We call  $P_{n,s}$  the (n, s)-Everest polytope in honor of G. R. Everest  $P_{n,s}$  is a • closed non-degenerate convex polytope • of dimension ns

$$g_{n,s}\begin{pmatrix}x_{1,1}&\ldots&x_{1,s}\\\vdots&&\vdots\\x_{n,1}&\ldots&x_{n,s}\end{pmatrix} := \max\begin{cases}0\\x_{1,1}\\\vdots\\x_{n,1}\end{pmatrix} + \cdots + \max\begin{cases}0\\x_{1,s}\\\vdots\\x_{n,s}\end{pmatrix} + \\\\\max\begin{cases}-x_{1,1}-\cdots-x_{1,s}\\\vdots\\-x_{n,1}-\cdots-x_{n,s}\end{pmatrix}$$
$$P_{n,s} := \{(x_{1,1},\ldots,x_{n,s}) \in \mathbb{R}^{ns} \mid g_{n,s}(x_{1,1},\ldots,x_{n,s}) \leq 1\}$$

We call  $P_{n,s}$  the (n,s)-Everest polytope in honor of G. R. Everest

- $P_{n,s}$  is a closed non-degenerate convex polytope
  - of dimension ns
  - contained in  $[-1,1]^{ns}$

$$g_{n,s}\begin{pmatrix}x_{1,1}&\ldots&x_{1,s}\\\vdots&&\vdots\\x_{n,1}&\ldots&x_{n,s}\end{pmatrix} := \max\begin{cases}0\\x_{1,1}\\\vdots\\x_{n,1}\end{pmatrix} + \cdots + \max\begin{cases}0\\x_{1,s}\\\vdots\\x_{n,s}\end{pmatrix} + \\\\\max\begin{cases}-x_{1,1}-\cdots-x_{1,s}\\\vdots\\-x_{n,1}-\cdots-x_{n,s}\end{pmatrix}$$
$$P_{n,s} := \{(x_{1,1},\ldots,x_{n,s}) \in \mathbb{R}^{ns} \mid g_{n,s}(x_{1,1},\ldots,x_{n,s}) \leq 1\}$$

We call  $P_{n,s}$  the (n,s)-Everest polytope in honor of G. R. Everest

- $P_{n,s}$  is a closed non-degenerate convex polytope
  - of dimension ns
  - contained in  $[-1,1]^{ns}$
  - with boundary  $\partial(P_{n,s}) = \{ \mathbf{x} \in \mathbb{R}^{ns} \mid g_{n,s}(\mathbf{x}) = 1 \}$

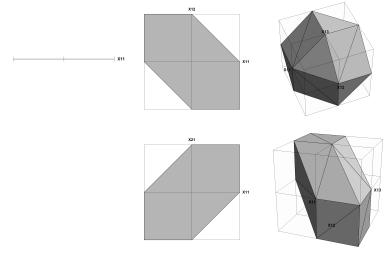


Figure: P<sub>1,1</sub>, P<sub>1,2</sub>, P<sub>1,3</sub>, P<sub>2,1</sub>, P<sub>3,1</sub>

э

| $n \setminus s$ | 1 | 2     | 3     | 4     | 5     |
|-----------------|---|-------|-------|-------|-------|
| 1               | 2 | 3     | 10/3  | 35/12 | 21/10 |
| 2               | 3 | 15/4  | 7/3   | 55/64 |       |
| 3               | 4 | 7/2   | 55/54 |       |       |
| 4               | 5 | 45/16 |       |       |       |
| 5               | 6 |       |       |       |       |

Table: Values of  $c_{n,s} = \lambda_{ns}(P_{n,s})$ 

(日) (日) (日) (日) (日) (日) (日) (日) (日) (日)

Barroero, Frei, Fuchs, Tichy, and Ziegler: Formulas for  $c_{n,1}$ ,  $c_{n,2}$ ,  $c_{1,s}$ 

| $n \setminus s$ | 1 | 2     | 3     | 4     | 5     |
|-----------------|---|-------|-------|-------|-------|
| 1               | 2 | 3     | 10/3  | 35/12 | 21/10 |
| 2               | 3 | 15/4  | 7/3   | 55/64 |       |
| 3               | 4 | 7/2   | 55/54 |       |       |
| 4               | 5 | 45/16 |       |       |       |
| 5               | 6 |       |       |       |       |

Table: Values of  $c_{n,s} = \lambda_{ns}(P_{n,s})$ 

Barroero, Frei, Fuchs, Tichy, and Ziegler: Formulas for  $c_{n,1}$ ,  $c_{n,2}$ ,  $c_{1,s}$ 

Theorem (Kerber, Tichy, W.)

$$c_{n,s} = rac{1}{(s!)^{n+1}} rac{((n+1)s)!}{(ns)!}$$

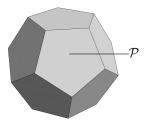
for all  $n, s \in \mathbb{N}$ 

In the remaining part of the talk let:

*d* ∈ ℕ

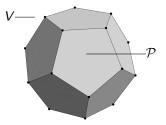
In the remaining part of the talk let:

- $d \in \mathbb{N}$
- $\mathcal{P} \subseteq \mathbb{R}^d$  a non-degenerate convex polytope



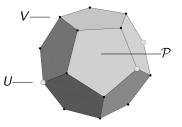
In the remaining part of the talk let:

- d ∈ N
- $\mathcal{P} \subseteq \mathbb{R}^d$  a non-degenerate convex polytope
- $V \subseteq \mathbb{R}^d$  the set of vertices of  $\mathcal{P}$



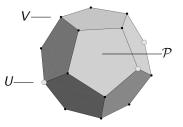
In the remaining part of the talk let:

- $\mathcal{P} \subseteq \mathbb{R}^d$  a non-degenerate convex polytope
- $V \subseteq \mathbb{R}^d$  the set of vertices of  $\mathcal{P}$
- $U \subseteq V$



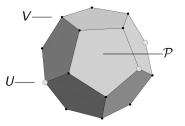
In the remaining part of the talk let:

- $\mathcal{P} \subseteq \mathbb{R}^d$  a non-degenerate convex polytope
- $V \subseteq \mathbb{R}^d$  the set of vertices of  $\mathcal{P}$
- $U \subseteq V$
- $\frac{n}{u} := |U|$



In the remaining part of the talk let:

- $\mathcal{P} \subseteq \mathbb{R}^d$  a non-degenerate convex polytope
- $V \subseteq \mathbb{R}^d$  the set of vertices of  $\mathcal{P}$
- $U \subseteq V$
- $\frac{n}{u} := |U|$
- ₩.l.o.g.: **0** ∈ *U*

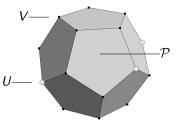


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

In the remaining part of the talk let:

- $\mathcal{P} \subseteq \mathbb{R}^d$  a non-degenerate convex polytope
- $V \subseteq \mathbb{R}^d$  the set of vertices of  $\mathcal{P}$
- $U \subseteq V$
- n := |U|
- ₩.l.o.g.: **0** ∈ *U*

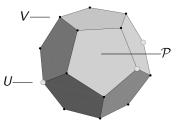
Main question: Is there a U-spinal triangulation of  $\mathcal{P}$ ?



▲ロト ▲掃 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ ∽ � � @

In the remaining part of the talk let:

- $\mathcal{P} \subseteq \mathbb{R}^d$  a non-degenerate convex polytope
- $V \subseteq \mathbb{R}^d$  the set of vertices of  $\mathcal{P}$
- $U \subseteq V$
- $\frac{n}{u} := |U|$
- ₩.l.o.g.: **0** ∈ *U*



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

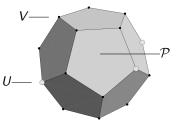
Main question: Is there a U-spinal triangulation of  $\mathcal{P}$ ?

Triangulation of  $\mathcal{P}$ : set of *d*-simplices such that

- their vertices are in V
- $\bullet$  their union covers  ${\cal P}$
- they pairwise intersect in a common face (note: we consider {} a face)

In the remaining part of the talk let:

- $\mathcal{P} \subseteq \mathbb{R}^d$  a non-degenerate convex polytope
- $V \subseteq \mathbb{R}^d$  the set of vertices of  $\mathcal{P}$
- $U \subseteq V$
- $\frac{n}{u} := |U|$
- ₩.l.o.g.: **0** ∈ *U*



くしゃ 本面 そうき キャー ほう うみる

Main question: Is there a U-spinal triangulation of  $\mathcal{P}$ ?

Triangulation of  $\mathcal{P}$ : set of *d*-simplices such that

- their vertices are in V
- $\bullet$  their union covers  ${\cal P}$
- they pairwise intersect in a common face (note: we consider {} a face)

 ${\it U} ext{-spinal}$  triangulation of  ${\cal P} ext{:}$  triangulation of  ${\cal P}$  such that

• every simplex contains U

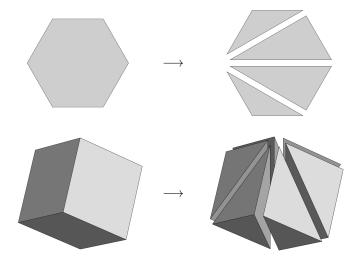


Figure: U-spinal triangulations of a hexagon and a cube

(ロ)、(型)、(E)、(E)、(E)、(D)へ(C)

Main question: Is there a U-spinal triangulation of  $\mathcal{P}$ ?

Main question: Is there a U-spinal triangulation of  $\mathcal{P}$ ?

Definition: U is called a spine of  $\mathcal{P}$  if the union of all d-simplices  $\sigma$  with  $U \subseteq V(\sigma) \subseteq V$  covers  $\mathcal{P}$ 

(日)、(型)、(E)、(E)、(E)、(O)()

Main question: Is there a U-spinal triangulation of  $\mathcal{P}$ ?

Definition: U is called a spine of  $\mathcal{P}$  if the union of all d-simplices  $\sigma$  with  $U \subseteq V(\sigma) \subseteq V$  covers  $\mathcal{P}$ 

**Lemma**: *U* is a spine of  $\mathcal{P}$  if and only if every facet of  $\mathcal{P}$  contains at least n-1 points in *U* 

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Main question: Is there a U-spinal triangulation of  $\mathcal{P}$ ?

Definition: U is called a spine of  $\mathcal{P}$  if the union of all d-simplices  $\sigma$  with  $U \subseteq V(\sigma) \subseteq V$  covers  $\mathcal{P}$ 

**Lemma**: *U* is a spine of  $\mathcal{P}$  if and only if every facet of  $\mathcal{P}$  contains at least n-1 points in *U* 

**Lifting theorem** (Kerber, Tichy, W.) There exists a *U*-spinal triangulation of  $\mathcal{P}$  if and only if *U* is a spine of  $\mathcal{P}$ 

Main question: Is there a U-spinal triangulation of  $\mathcal{P}$ ?

Definition: U is called a spine of  $\mathcal{P}$  if the union of all d-simplices  $\sigma$  with  $U \subseteq V(\sigma) \subseteq V$  covers  $\mathcal{P}$ 

**Lemma**: *U* is a spine of  $\mathcal{P}$  if and only if every facet of  $\mathcal{P}$  contains at least n-1 points in *U* 

**Lifting theorem** (Kerber, Tichy, W.) There exists a *U*-spinal triangulation of  $\mathcal{P}$  if and only if *U* is a spine of  $\mathcal{P}$ 

Moreover:

If  $\bullet \Phi : \mathbb{R}^d \to \mathbb{R}^{d-(n-1)}$  is the orthogonal projection of  $\mathbb{R}^d$  to the orthogonal complement of the (n-1)-dimensional subspace spanned by U

Main question: Is there a U-spinal triangulation of  $\mathcal{P}$ ?

Definition: U is called a spine of  $\mathcal{P}$  if the union of all d-simplices  $\sigma$  with  $U \subseteq V(\sigma) \subseteq V$  covers  $\mathcal{P}$ 

**Lemma**: *U* is a spine of  $\mathcal{P}$  if and only if every facet of  $\mathcal{P}$  contains at least n-1 points in *U* 

**Lifting theorem** (Kerber, Tichy, W.) There exists a *U*-spinal triangulation of  $\mathcal{P}$  if and only if *U* is a spine of  $\mathcal{P}$ 

Moreover:

- If  $\bullet \Phi : \mathbb{R}^d \to \mathbb{R}^{d-(n-1)}$  is the orthogonal projection of  $\mathbb{R}^d$  to the orthogonal complement of the (n-1)-dimensional subspace spanned by U and
  - $\hat{\mathcal{P}} := \Phi(\mathcal{P})$  is the shadow of  $\mathcal{P}$ ,

Main question: Is there a U-spinal triangulation of  $\mathcal{P}$ ?

Definition: U is called a spine of  $\mathcal{P}$  if the union of all d-simplices  $\sigma$  with  $U \subseteq V(\sigma) \subseteq V$  covers  $\mathcal{P}$ 

**Lemma**: *U* is a spine of  $\mathcal{P}$  if and only if every facet of  $\mathcal{P}$  contains at least n-1 points in *U* 

**Lifting theorem** (Kerber, Tichy, W.) There exists a *U*-spinal triangulation of  $\mathcal{P}$  if and only if *U* is a spine of  $\mathcal{P}$ 

Moreover:

- If  $\bullet \Phi : \mathbb{R}^d \to \mathbb{R}^{d-(n-1)}$  is the orthogonal projection of  $\mathbb{R}^d$  to the orthogonal complement of the (n-1)-dimensional subspace spanned by U and
  - $\hat{\mathcal{P}} := \Phi(\mathcal{P})$  is the *shadow* of  $\mathcal{P}$ ,
- then the U-spinal triangulations of  $\mathcal{P}$  are exactly the lifts of the star-triangulations of  $\hat{\mathcal{P}}$  with respect to  $\mathbf{0}$

Main question: Is there a U-spinal triangulation of  $\mathcal{P}$ ?

Definition: U is called a spine of  $\mathcal{P}$  if the union of all d-simplices  $\sigma$  with  $U \subseteq V(\sigma) \subseteq V$  covers  $\mathcal{P}$ 

**Lemma**: *U* is a spine of  $\mathcal{P}$  if and only if every facet of  $\mathcal{P}$  contains at least n-1 points in *U* 

**Lifting theorem** (Kerber, Tichy, W.) There exists a *U*-spinal triangulation of  $\mathcal{P}$  if and only if *U* is a spine of  $\mathcal{P}$ 

Moreover:

- If  $\bullet \Phi : \mathbb{R}^d \to \mathbb{R}^{d-(n-1)}$  is the orthogonal projection of  $\mathbb{R}^d$  to the orthogonal complement of the (n-1)-dimensional subspace spanned by U and
  - $\hat{\mathcal{P}} := \Phi(\mathcal{P})$  is the *shadow* of  $\mathcal{P}$ ,
- then the U-spinal triangulations of  $\mathcal{P}$  are exactly the lifts of the star-triangulations of  $\hat{\mathcal{P}}$  with respect to **0** and
  - $\binom{d}{n-1} \operatorname{vol}(\mathcal{P}) = \operatorname{vol}(U) \operatorname{vol}(\hat{\mathcal{P}})$  (note:  $\operatorname{vol}(U) := \operatorname{vol}(\operatorname{conv}(U)))_{\mathbb{P}}$





Figure: Two examples of the lifting process

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ○臣 - のへで

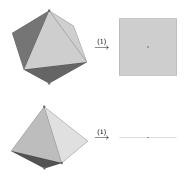


Figure: Two examples of the lifting process

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(1) Project  $\mathcal{P}$  to the orthogonal complement of the subspace spanned by U (prominent dots) to obtain shadow  $\hat{\mathcal{P}}$ 

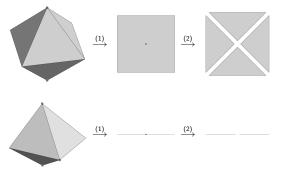


Figure: Two examples of the lifting process

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- (1) Project  $\mathcal{P}$  to the orthogonal complement of the subspace spanned by U (prominent dots) to obtain shadow  $\hat{\mathcal{P}}$
- (2) Star-triangulate  $\hat{\mathcal{P}}$  with respect to the origin

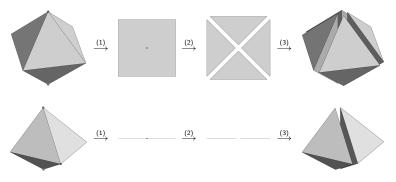


Figure: Two examples of the lifting process

- (1) Project  $\mathcal{P}$  to the orthogonal complement of the subspace spanned by U (prominent dots) to obtain shadow  $\hat{\mathcal{P}}$
- (2) Star-triangulate  $\hat{\mathcal{P}}$  with respect to the origin
- (3) Lift star triangulation of  $\hat{\mathcal{P}}$  to obtain U-spinal triangulation of  $\mathcal{P}$

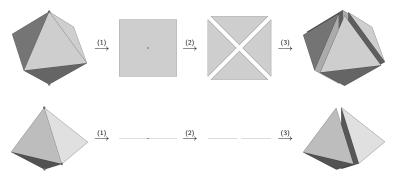


Figure: Two examples of the lifting process

- (1) Project  $\mathcal{P}$  to the orthogonal complement of the subspace spanned by U (prominent dots) to obtain shadow  $\hat{\mathcal{P}}$
- (2) Star-triangulate  $\hat{\mathcal{P}}$  with respect to the origin
- (3) Lift star triangulation of  $\hat{\mathcal{P}}$  to obtain *U*-spinal triangulation of  $\mathcal{P}$

Note: every facet of  $\mathcal P$  contains exactly n-1 points of U in both examples

・ 同 ト ・ ヨ ト ・ ヨ ト

Comparison of volumes

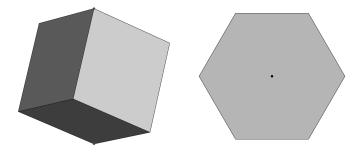


Figure: A cube and its shadow

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Comparison of volumes

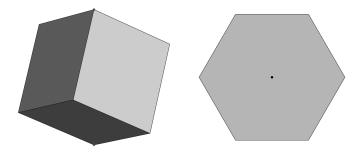


Figure: A cube and its shadow

Lifting theorem 
$$\Rightarrow \underbrace{\begin{pmatrix} d \\ n-1 \end{pmatrix}}_{\begin{pmatrix} 3 \\ 2-1 \end{pmatrix}=3} \underbrace{\operatorname{vol}(\mathcal{P})}_{1} = \underbrace{\operatorname{vol}(U)}_{\sqrt{3}} \underbrace{\operatorname{vol}(\hat{\mathcal{P}})}_{\sqrt{3}}$$

Reminder: Interested in volume  $c_{n,s}$  of (n, s)-Everest polytope  $P_{n,s} := \{(x_{1,1}, \dots, x_{n,s}) \in \mathbb{R}^{ns} \mid g_{n,s}(x_{1,1}, \dots, x_{n,s}) \leq 1\}$ 

Reminder: Interested in volume  $c_{n,s}$  of (n, s)-Everest polytope  $P_{n,s} := \{(x_{1,1}, \dots, x_{n,s}) \in \mathbb{R}^{ns} \mid g_{n,s}(x_{1,1}, \dots, x_{n,s}) \leq 1\}$ 

**Lemma**: Let  $I_d$  be the identity matrix of dimension d,

Reminder: Interested in volume  $c_{n,s}$  of (n, s)-Everest polytope  $P_{n,s} := \{(x_{1,1}, \dots, x_{n,s}) \in \mathbb{R}^{ns} \mid g_{n,s}(x_{1,1}, \dots, x_{n,s}) \leq 1\}$ 

**Lemma**: Let  $I_d$  be the identity matrix of dimension d,

$$\mathbf{A}_{n,s} := \begin{pmatrix} -I_s \\ I_{ns} & \vdots \\ & -I_s \end{pmatrix} \in \mathbb{R}^{(ns) \times ((n+1)s)},$$

Reminder: Interested in volume  $c_{n,s}$  of (n, s)-Everest polytope  $P_{n,s} := \{(x_{1,1}, \dots, x_{n,s}) \in \mathbb{R}^{ns} \mid g_{n,s}(x_{1,1}, \dots, x_{n,s}) \leq 1\}$ 

**Lemma**: Let  $I_d$  be the identity matrix of dimension d,

$$\mathbf{A}_{n,s} := \begin{pmatrix} -I_s \\ I_{ns} & \vdots \\ & -I_s \end{pmatrix} \in \mathbb{R}^{(ns) \times ((n+1)s)},$$

and  $\Delta_{\boldsymbol{s}}$  := conv  $\{\boldsymbol{0}, (-1, 0, \dots, 0), \dots, (0, \dots, 0, -1)\} \subseteq \mathbb{R}^{\boldsymbol{s}}$ .

Reminder: Interested in volume  $c_{n,s}$  of (n, s)-Everest polytope  $P_{n,s} := \{(x_{1,1}, \dots, x_{n,s}) \in \mathbb{R}^{ns} \mid g_{n,s}(x_{1,1}, \dots, x_{n,s}) \leq 1\}$ 

**Lemma**: Let  $I_d$  be the identity matrix of dimension d,

$$\mathbf{A}_{n,s} := \begin{pmatrix} -I_s \\ I_{ns} & \vdots \\ & -I_s \end{pmatrix} \in \mathbb{R}^{(ns) \times ((n+1)s)},$$

and  $\Delta_s := \operatorname{conv} \{\mathbf{0}, (-1, 0, \dots, 0), \dots, (0, \dots, 0, -1)\} \subseteq \mathbb{R}^s$ . Then  $A_{n,s}\Delta_s^{n+1} = P_{n,s}$  and the (n, s)-Everest polytope is the shadow (almost) of the (n+1, s)-simplotope  $\Delta_s^{n+1} \subseteq \mathbb{R}^{(n+1)s}$ .

Reminder: Interested in volume  $c_{n,s}$  of (n, s)-Everest polytope  $P_{n,s} := \{(x_{1,1}, \dots, x_{n,s}) \in \mathbb{R}^{ns} \mid g_{n,s}(x_{1,1}, \dots, x_{n,s}) \leq 1\}$ 

**Lemma**: Let  $I_d$  be the identity matrix of dimension d,

$$\mathbf{A}_{n,s} := \begin{pmatrix} -I_s \\ I_{ns} & \vdots \\ & -I_s \end{pmatrix} \in \mathbb{R}^{(ns) \times ((n+1)s)},$$

and  $\Delta_s := \operatorname{conv} \{\mathbf{0}, (-1, 0, \dots, 0), \dots, (0, \dots, 0, -1)\} \subseteq \mathbb{R}^s$ . Then  $A_{n,s}\Delta_s^{n+1} = P_{n,s}$  and the (n, s)-Everest polytope is the shadow (almost) of the (n+1, s)-simplotope  $\Delta_s^{n+1} \subseteq \mathbb{R}^{(n+1)s}$ .

Lifting theorem 
$$\Rightarrow \underbrace{\begin{pmatrix} d \\ n-1 \end{pmatrix}}_{\binom{(n+1)s}{s+1-1} = \frac{((n+1)s)!}{s!(ns)!}} \underbrace{\operatorname{vol}(\Delta_s^{n+1})}_{\frac{1}{(s!)^{n+1}}} = \underbrace{\operatorname{vol}(U)}_{\frac{1}{s!}} \operatorname{vol}(P_{n,s})$$

Reminder: Interested in volume  $c_{n,s}$  of (n, s)-Everest polytope  $P_{n,s} := \{(x_{1,1}, \dots, x_{n,s}) \in \mathbb{R}^{ns} \mid g_{n,s}(x_{1,1}, \dots, x_{n,s}) \leq 1\}$ 

**Lemma**: Let  $I_d$  be the identity matrix of dimension d,

$$\mathbf{A}_{n,s} := \begin{pmatrix} -I_s \\ I_{ns} & \vdots \\ & -I_s \end{pmatrix} \in \mathbb{R}^{(ns) \times ((n+1)s)},$$

and  $\Delta_s := \operatorname{conv} \{\mathbf{0}, (-1, 0, \dots, 0), \dots, (0, \dots, 0, -1)\} \subseteq \mathbb{R}^s$ . Then  $A_{n,s}\Delta_s^{n+1} = P_{n,s}$  and the (n, s)-Everest polytope is the shadow (almost) of the (n+1, s)-simplotope  $\Delta_s^{n+1} \subseteq \mathbb{R}^{(n+1)s}$ .

Lifting theorem 
$$\Rightarrow \underbrace{\begin{pmatrix} d \\ n-1 \end{pmatrix}}_{\binom{(n+1)s}{s+1-1} = \frac{((n+1)s)!}{s!(ns)!}} \underbrace{\operatorname{vol}(\Delta_s^{n+1})}_{\frac{1}{(s!)^{n+1}}} = \underbrace{\operatorname{vol}(U)}_{\frac{1}{s!}} \operatorname{vol}(P_{n,s})$$
Thus  $\operatorname{vol}(P_{n,s}) = \frac{1}{(s!)^{n+1}} \underbrace{((n+1)s)!}_{(ns)!}$ 

## Conclusion

**Lemma**: *U* is a spine of  $\mathcal{P}$  if and only if every facet of  $\mathcal{P}$  contains at least n-1 points in *U* 

#### **Lifting theorem** (Kerber, Tichy, W.) There exists a *U*-spinal triangulation of $\mathcal{P}$ if and only if *U* is a spine of $\mathcal{P}$

- The U-spinal triangulations of  $\mathcal{P}$  are exactly the lifts of the star-triangulations of  $\hat{\mathcal{P}}$  with respect to **0** and
- $\binom{d}{n-1}$  vol $(\mathcal{P}) =$  vol(U) vol $(\hat{\mathcal{P}})$

**Theorem** (Kerber, Tichy, W.) •  $c_{n,s} = \frac{1}{(s!)^{n+1}} \frac{((n+1)s)!}{(ns)!}$  for all  $n, s \in \mathbb{N}$ 

Thank you for your attention!