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Number theoretic motivation: an arithmetic constant

Let uK ,S(n; q) : Number of representations of algebraic integers α

with
∣∣NK/Q(α)

∣∣ ≤ q that can be written as sums

of exactly n S-units

Theorem (Fuchs, Tichy, Ziegler 2009)

uK ,S(n; q) =
cn−1,s
n!

(
ωK log(q)s

RegK ,S

)n−1

+ o(log(q)(n−1)s−1+ε) (q →∞)
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Figure: P1,1, P1,2, P1,3, P2,1, P3,1
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n\s 1 2 3 4 5

1 2 3 10/3 35/12 21/10

2 3 15/4 7/3 55/64

3 4 7/2 55/54

4 5 45/16

5 6

Table: Values of cn,s = λns(Pn,s)

Barroero, Frei, Fuchs, Tichy, and Ziegler: Formulas for cn,1, cn,2, c1,s

Theorem (Kerber, Tichy, W.)

cn,s =
1

(s!)n+1

((n + 1)s)!

(ns)!

for all n, s ∈ N
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Geometric motivation: constrained triangulation

−→

−→

Figure: U-spinal triangulations of a hexagon and a cube
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Main question: Is there a U-spinal triangulation of P?

Definition: U is called a spine of P if the union of all d-simplices σ with
U ⊆ V (σ) ⊆ V covers P

Lemma: U is a spine of P if and only if every facet of P contains at least
n − 1 points in U

Lifting theorem (Kerber, Tichy, W.)
There exists a U-spinal triangulation of P if and only if U is a spine of P

Moreover:

If • Φ : Rd → Rd−(n−1) is the orthogonal projection of Rd to the
orthogonal complement of the (n − 1)-dimensional subspace
spanned by U and

• P̂ := Φ(P) is the shadow of P,

then • the U-spinal triangulations of P are exactly the lifts of the
star-triangulations of P̂ with respect to 0 and

•
(

d
n−1
)

vol(P) = vol(U) vol(P̂) (note: vol(U) := vol(conv(U)))
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Figure: Two examples of the lifting process

(1) Project P to the orthogonal complement of the subspace spanned by U

(prominent dots) to obtain shadow P̂
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(1) Project P to the orthogonal complement of the subspace spanned by U
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(3) Lift star triangulation of P̂ to obtain U-spinal triangulation of P

Note: every facet of P contains exactly n − 1 points of U in both examples
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Comparison of volumes

Figure: A cube and its shadow

Lifting theorem ⇒
(

d

n − 1

)
︸ ︷︷ ︸
( 3
2−1)=3

vol(P)︸ ︷︷ ︸
1

= vol(U)︸ ︷︷ ︸√
3

vol(P̂)︸ ︷︷ ︸√
3
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Application of lifting theorem to Everest polytopes

Reminder: Interested in volume cn,s of (n, s)-Everest polytope

Pn,s := {(x1,1, . . . , xn,s) ∈ Rns | gn,s(x1,1, . . . , xn,s) ≤ 1}

Lemma: Let Id be the identity matrix of dimension d ,

An,s :=

 −Is
Ins

...
−Is

 ∈ R(ns)×((n+1)s),

and ∆s := conv {0, (−1, 0, . . . , 0), . . . , (0, . . . , 0,−1)} ⊆ Rs .

Then An,s∆n+1
s = Pn,s and the (n, s)-Everest polytope is the

shadow (almost) of the (n + 1, s)-simplotope ∆n+1
s ⊆ R(n+1)s .

Lifting theorem ⇒
(

d

n − 1

)
︸ ︷︷ ︸

((n+1)s
s+1−1)=

((n+1)s)!
s!(ns)!

vol(∆n+1
s )︸ ︷︷ ︸

1
(s!)n+1

= vol(U)︸ ︷︷ ︸
1
s!

vol(Pn,s)

Thus vol(Pn,s) = 1
(s!)n+1

((n+1)s)!
(ns)!
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Conclusion

Lemma: U is a spine of P if and only if every facet of P contains at least
n − 1 points in U

Lifting theorem (Kerber, Tichy, W.)
There exists a U-spinal triangulation of P if and only if U is a spine of P

• The U-spinal triangulations of P are exactly the lifts of the
star-triangulations of P̂ with respect to 0 and

•
(

d
n−1
)

vol(P) = vol(U) vol(P̂)

• (1)−→ (2)−→ (3)−→

Theorem (Kerber, Tichy, W.)

• cn,s = 1
(s!)n+1

((n+1)s)!
(ns)! for all n, s ∈ N

Thank you for your attention!


