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Definitions

Let d ∈ N and r = (r1, . . . , rd) ∈ Rd

τr : Zd 7→ Zd

x = (x1, . . . , xd) → (x2, . . . , xd ,−brxc)

is called the d - dimensional SRS associated with r (AKIYAMA et al.
2005)

where rx =
∑d

i=1 rixi denotes the scalar product of r and x
and byc the largest integer less than or equal to some real y . (floor)

Dd := {r ∈ Rd | each orbit of τr is ultimately periodic}
D(0)

d := {r ∈ Rd | each orbit of τr ends up in 0}

Elements of D(0)
d are said to have the finiteness property.

D(0)
d ⊆ Dd
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Definitions

Analogously let d ∈ N and r = (r1, . . . , rd) ∈ Cd

γr : Z[i]d 7→ Z[i]d

x = (x1, . . . , xd) → (x2, . . . , xd ,−brxc)

is called the d - dimensional GSRS associated with r

where rx =
∑d

i=1 rixi denotes the scalar product of r and x
and byc := b<(y)c+ i b=(y)c.

Gd := {r ∈ Cd | each orbit of γr is ultimately periodic}
G(0)d := {r ∈ Cd | each orbit of γr ends up in 0}

Elements of G(0)d are said to have the finiteness property.

G(0)d ⊆ Gd
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Relation between SRS and GSRS

SRS GSRS

τr : Zd 7→ Zd (r ∈ Rd) γr : Z[i]d 7→ Z[i]d (r ∈ Cd)
Dd Gd

D(0)
d G(0)d

In particular for d = 2↔ d = 1:

Identify C↔ R2 and Z[i]↔ Z2

τ(r ,s) : Z2 7→ Z2

(a, b) → (b,−bra + sbc)

γ(r ,s) : Z2 7→ Z2

(a, b) → (−bra− sbc ,−brb + sac)
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Definitions

Example:

d = 2
r = ( 9

10 ,
13
10 ) ∈ R2

τr((x1, x2)) = (x2,−brxc)

(0, 3) τr−→ (3,−3) τr−→ (−3, 2) τr−→ (2, 1) τr−→ (1,−3) τr−→ (−3, 3)
τr−→ (3,−1) τr−→ (−1,−1) τr−→ (−1, 3) τr−→ (3,−3) τr−→ (−3, 2)
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Relation between SRS, β-Expansions, and Canonical Number Systems
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Motivation - Relation to β-Expansions

Let β > 1 be a non-integral, real number.

Then A := {0, 1, . . . , bβc} is called the set of digits,
as every γ ∈ [0,∞) can be represented uniquely in the form

γ = amβ
m + am−1β

m−1 + · · ·
(greedy expansion of γ with respect to β)

with m ∈ Z and ai ∈ A, such that

0 ≤ γ −
m∑

i=k

aiβ
i < βk

holds for all k ≤ m.
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Motivation - Relation to β-Expansions

For γ ∈ [0, 1) the greedy expansion can be given by the β-transformation

Tβ(γ) = βγ − bβγc

γ = bβγcβ−1 + Tβ(γ)β−1 = bβγcβ−1 + bβTβ(γ)cβ−2 + T 2
β (γ)β

−2

=
k∑

i=1

bβT i−1
β (γ)c︸ ︷︷ ︸
digits

β−i + T k
β (γ)β

−k

Example:

β = ϕ = 1+
√

5
2 = 1.6180339887 . . . (⇒ A = {0, 1})

γ = 5
ϕ −

11
ϕ3 = 0.49342219125 . . .

0.493 . . . (0)
Tβ−→ 0.798 . . . (1)

Tβ−→ 0.291 . . . (0)
Tβ−→ 0.472 . . . (0)

Tβ−→
0.763 . . . (1)

Tβ−→ 0.236 . . . (0)
Tβ−→ 0.381 . . . (0)

Tβ−→ 0.618 . . . (1)
Tβ−→

0 . . . (0)
Tβ−→ 0 . . . (0) . . .

γ = 0 · 1
β + 1 · 1

β2 + 0 · 1
β3 + 0 · 1

β4 + 1 · 1
β5 + 0 · 1

β6 + 0 · 1
β7 + 1 · 1

β8
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Motivation - Relation to β-Expansions

Let Fin(β) be the set of all γ ∈ [0, 1) having finite greedy expansion with
respect to β.

Then Fin(β) ⊆ Z[ 1
β ] ∩ [0, 1)

If Fin(β) = Z[ 1
β ] ∩ [0, 1) then β is said to have property (F).

In that case β is an algebraic integer (furthermore a Pisot number) and
therefore has a minimal polynomial

X d + ad−1X d−1 + · · ·+ a1X + a0 ∈ Z[X ]

which can be written as

(X − β)(X d−1 + rd−2X d−2 + · · ·+ r1X + r0)

Then β has property (F) ⇐⇒ (r0, . . . , rd−2) ∈ D(0)
d−1 (AKIYAMA et al.

2005)
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Motivation - Relation to Canonical Number Systems

A similar relation can be shown for CNS:

Let P(X ) = X d + pd−1X d−1 + · · ·+ p1X + p0 ∈ Z[X ]

Then P is a CNS polynomial ⇐⇒ ( 1
p0
,

pd−1
p0

, . . . , p2
p0
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) ∈ D(0)

d
(AKIYAMA et al. 2005)



Motivation - Relation to Canonical Number Systems

A similar relation can be shown for CNS:

Let P(X ) = X d + pd−1X d−1 + · · ·+ p1X + p0 ∈ Z[X ]

Then P is a CNS polynomial ⇐⇒ ( 1
p0
,

pd−1
p0

, . . . , p2
p0
, p1

p0
) ∈ D(0)

d
(AKIYAMA et al. 2005)



Motivation - Relation to Canonical Number Systems

A similar relation can be shown for CNS:

Let P(X ) = X d + pd−1X d−1 + · · ·+ p1X + p0 ∈ Z[X ]

Then P is a CNS polynomial ⇐⇒ ( 1
p0
,

pd−1
p0

, . . . , p2
p0
, p1

p0
) ∈ D(0)

d
(AKIYAMA et al. 2005)



Basic properties of (G)SRS

For r = (r1, . . . , rd) ∈ Rd let

Rr :=


0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1
−r1 −r2 · · · · · · −rd


– the companion matrix of χr(X ) = X d + rdX d−1 + · · ·+ r2X + r1.

Then τr(x) = Rrx + vx where vx = (0, . . . , 0, {rx}).

Let ρ(M) denote the spectral radius of a matrix.
(i.e. the maximum absolute value of eigenvalues)

Then • Dd ⊆ {r ∈ Rd | ρ(Rr) ≤ 1}
• {r ∈ Rd | ρ(Rr) < 1} ⊆ Dd
• ∂Dd = {r ∈ Rd | ρ(Rr) = 1}

Equivalent statements are true for Gd .
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Characterization of D(0)
d and G(0)d – Two important concepts

Cutout polyhedra

For a tuple π of vectors in Zd let P(π) denote the set of all r ∈ Rd

for which π is a period of τr.

π = (x1, . . . , xn), τr(x1) = x2, . . . ,τr(xn) = x1

Then

P(π) is a (possibly degenerate) convex polyhedron characterized by a
finite set of linear inequalities

D(0)
d = Dd \

⋃
π 6=0

P(π) (BRUNOTTE 2001)

Equivalent statements are true for Gd and G(0)d .
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Characterization of D(0)
d and G(0)d – Two important concepts

Sets of witnesses

A set V ⊆ Zd is called a set of witnesses for r ∈ Rd iff it is stable under
τr and τ?r := −τr ◦ (−idZd ) and contains a generating set of the group
(Zd ,+) which is closed under taking inverses.

Every such set of witnesses has the decisive property:

r ∈ D(0)
d ⇔ ∀ a ∈ V : ∃ n ∈ N : τn

r (a) = 0

Find a finite set of witnesses iteratively for r ∈ int (Dd):

V0 := {(±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)}
∀ n ∈ N : Vn := Vn−1 ∪ τr(Vn−1) ∪ τ?r (Vn−1)

Vr :=
⋃

n∈N0

Vn

(BRUNOTTE 2001)

Equivalent statements are true for Gd and G(0)d .
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Characterization of G(0)1 (Pethő’s Loudspeaker)

G(0)1 is contained in the closed right half of the closed unit disk, and is
symmetric with respect to the real axis (BRUNOTTE et al. 2011).

Conjecture by M.W.:

G(0)1 = GC where GC is a (neither open nor closed) polygon given by ten
infinite sequences of points in C (and their complex conjugates).
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Characterization of G(0)1 (Pethő’s Loudspeaker)

Ten sequences:

z1(n) = 1+ −2+in
n2−2 z6(n) = 1+ −1+i(n+1)

n2+n+1

z2(n) = 1+ −1+i(n−1)
n2−n−1 z7(n) = 1+ −1+i(n+1)

n2+n+2

z3(n) = 1+ −1+i(n−1)
n2−n z8(n) = 1+ −1+in

n2+2

z4(n) = 1+ −1+in
n2 z9(n) = 1+ −1+in

n2+3

z5(n) = 1+ −1+in
n2+1 z10(n) = 1+ −2+i(n+1)

n2+n+6



Characterization of G(0)1 (Pethő’s Loudspeaker)

Already proven: G(0)1 ⊆ GC

Result achieved by identification of 20 families of cutout polygons
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Figure: 20 families of cutout polygons
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Characterization of G(0)1 (Pethő’s Loudspeaker)

Other inclusion: Settled inside
{
r ∈ C | |r| ≤ 1023

1024

}
by a new algorithm

( 9
10 , 0)

( 9
10 ,

1
10 )

(1, 0)

(1, 1
10 )

Figure: Region settled algorithmically



Characterization of G(0)1 (Pethő’s Loudspeaker)

Hope for full characterization of G(0)1
by thorough investigation of orbits of γr!



Characterization of D(0)
d – Previous results

• D1 = [−1, 1], D(0)
1 = [0, 1)

• D2 ⊆ {(x , y) ∈ R2 | x ≥ |y |− 1∧ x ≤ 1}

(1,-2)

(1,2)

(-1,0)



Characterization of D(0)
d – Previous results

• D1 = [−1, 1], D(0)
1 = [0, 1)

• D2 ⊆ {(x , y) ∈ R2 | x ≥ |y |− 1∧ x ≤ 1}

(1,-2)

(1,2)

(-1,0)



Characterization of D(0)
d – Previous results

• D1 = [−1, 1], D(0)
1 = [0, 1)

• D2 ⊆ {(x , y) ∈ R2 | x ≥ |y |− 1∧ x ≤ 1}

• Several regions of D(0)
2 have been

characterized by AKIYAMA et al. in
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• Adaptation of the concept of sets of
witnesses leads to an algorithm due to
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Applied by SURER 2008 to characterize
D(0)
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(x , y) ∈ R2 | x ≤ L

}
where

L = 99
100
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Characterization of D(0)
d – New results

Theorem (M.W.):

• D(0)
2 has at least 22 connected components

• The largest connected component of D(0)
2 has at least 3 holes

Result achieved by a new algorithm which has been used to characterize
D(0)

2 ∩
{
(x , y) ∈ R2 | x ≤ L

}
where L = 511

512 .
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Two new algorithms

Basic concept:

Divide a given convex region inside the interior of Dd into finitely many
classes related to sets of witnesses.

Each class is either contained in D(0)
d or has empty intersection with it.

Handle classes in a sophisticated order to minimize computation time!
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Two new algorithms

Figure: Hidden structure revealed by classes related to sets of witnesses



Two new algorithms

Advantages of the first algorithm:

• Faster than Brunotte’s algorithm

• A “real” algorithm (terminates for all inputs)

Advantages of the second algorithm:

• Much faster than Brunotte’s algorithm

• Very compact output (minimal list of cutout polyhedra)
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Thank you for your attention!



Motivation - Relation to Canonical Number Systems

Let
P(X ) = X d + pd−1X d−1 + · · ·+ p1X + p0 ∈ Z[X ]
R := Z[X ]/P(X )Z[X ]
N := {0, 1, . . . , |p0| − 1}
x := X + P(X )Z[X ] ∈ R

(P,N ) is called a CNS, P a CNS polynomial and N the set of digits
if every non-zero element A(x) ∈ R can be represented uniquely in the
form

A(x) = amxm + am−1xm−1 + · · ·+ a1x + a0

with m ∈ N0, ai ∈ N and am 6= 0.

Then P is a CNS polynomial ⇐⇒ ( 1
p0
,

pd−1
p0

, . . . , p2
p0
, p1

p0
) ∈ D(0)

d
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